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ABSTRACT 
This work is focused on the simulation of polymer crystallization based upon the Avrami equation. 
The Avrami equation is routinely used as a tool for the crystallization kinetics description. The 
equation can be written in the form: 1 - Xc = exp (-Ktn) where Xc is the crystalline volume fraction 
developed at time t and constant temperature, and K and n are suitable parameters depending on 
crystallization conditions. In this work, several spherulitic structures were simulated using various 
time-dependent nucleation intensity and growth rate. The significance of the parameters for the 
structure variation was described and discussed. 
 
1. INTRODUCTION 
Properties of polymers are heavy influenced by they structure which is determined by process of 
crystallization. An useful tool to understand and predict the polymer structure is the numerical 
simulation. The theory of crystallization kinetics is based on the appearance and growth of 
geometrical objects which growth over the volume during the transformation. Theory of this process 
is given by Avrami [1] and improved by Evans [2]. 
 
1.1 The Johnson-Mehl-Avrami model 
The standard Johnson-Mehl-Avrami model describes the isothermal transformation from a mother 
phase α to a daughter phase β, by nucleation (the process by which the formation of a new phase 
begins), growth, and impingement (the restriction of transformed region growth by other transformed 
regions). This theory is based on three main assumptions: an infinite volume V available for 
transformation, random nuclei positions (nuclei positions are Poisson point process), and isotropic 
growth of transformed regions. Specific simplifying assumptions have also been made about 
geometry and kinetics of nucleation and growth, in order to derive analytical solutions for special 
cases, such as zero-nucleation rate (pre-existing nuclei), constant nucleation rate, linear growth 
velocity, diffusion-limited growth, and growth of crystals in needle- or plate-like configurations [3]. 
There are two special cases:  
1) the nuclei are predetermined; that is, they all develop at once on cooling the polymer to the 
temperature of crystallization (fig. 1), 
2) there is sporadic nucleation of the spheres (continuous nucleation with a constant rate), nuclei born 
inside older cells are rejected (fig.2). 
In the first case the growth process lead to Voronoi tessellation. Cells are convex, bounded by convex 
polygons. In special case if generators positions are random independent (Poisson point prosess), 
tessellation is called Poisson-Voronoi tessellation. In the second case the growth process lead to 
Johnson-Mehl tessellation, cells can be non-convex. 
The Avrami equation provides useful data on the overall kinetics of crystallization: 
 
 ( )nKtX −=− exp1 , (1) 
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where t is time, X is the volume fraction of daughter phase β and 1- X the volume fraction of mother 
α−phase. Parameters K and n depends on phase transformation mechanism. The equation has been 
derived for spheres, discs and line segments, representing three-, two- and one-dimensional form of 
isotropic constant rate growth.  
The values of exponent n can be expressed by formula n = m + g, where m is dimension of growth (m 
= 3 for spatial, m = 2 for planar and m = 1 for linear growth) and g = 0 for instantaneous nucleation 
and g = 1 for random (sporadic) nucleation. 
 

 
Figure 1: Growth model of planar Poisson-Voronoi tessellation – all nuclei develop at start of 

process 
 

 
Figure 2: Growth model of planar Johnson-Mehl tessellation – nuclei develop randomly continually 

 
2. SIMULATION 
The phase transformation is numerically simulated on computer. A set of planar or spatial nuclei is 
generated. To each nucleus a coordinates and birth time are assigned.  The two- or tree-dimensional 
space region is approximated by matrix of 10002 or 10003 points. In this region a set of about 200 
nuclei in 2D and 2000 nuclei in 3D case was located. For each space point a time required for nucleus 
growth to this point is computed and the index of generator with minimal time and this growth time 
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are assigned to this point. The growth velocity is isotropic and can be linear function of time to 
describe possible temperature change during process. To avoid a boundary effects the periodic 
boundary conditions are applied (fig. 3).  
 

 
Figure 3: Periodic boundary conditions – two the same square planar simulated tessellations annexed 

together, note that cells on one boundary continues at the opposite one. 
 
 
3.  RESULTS 
Two kinds of tessellations based on both type of nucleation processes mentioned above were 
simulated. The time-dependence of mother phase ratio was observed. Figure 4 shows the planar case, 
figure 5 the spatial case; versions a) describes instantaneous nucleation, versions b) the sporadic 
nucleation. Note, the declination of mother phase at start of transformation: for a) version begin 
immediately – all nuclei start to growth, for b) version the declination is belated – nuclei must 
foremost born ant then start the growth. The graph points are values obtained by computer simulation, 
lines are fitted to simulated data using formula (1). 
 

 
    a)      b) 

Figure 4: Time dependence of area ratio of mother phase. 
 

 
    a)      b) 

Figure 5: Time dependence of volume ratio of mother phase. 
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The following table collect the parameters of curves fitted to simulated data 
 
model Avrami’s n fitted n 
planar, instantaneous nucleation 2 2.00 
planar, sporadic nucleation 3 3.07 
spatial, instantaneous nucleation 3 2.94 
spatial, sporadic nucleation 4 3.93 
 
 
4. CONCLUSION  
We have chosen to start from basic principles of Avrami’s approach. First, it ensures the consistency 
of the whole formulation. Then it gives a more precise description of the nucleation event. From this 
base we can build more general events as is time-dependence of nucleation or growth rate. The 
influence of these parameters on final spatial tessellation will be studied in the next step. The spatial 
properties of tessellation are usually inaccessible by direct measurement. We would like to simulate 
planar sections of spatial tessellations and connect their properties with nucleation conditions. 
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