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ABSTRACT 
The study directs towards the estimation of grain size in materials with anisotropic bimodal-
structured morphology. Model material was prepared by compression moulding from plastics pellets 
with known bimodal size distribution. The estimation was based on the routine approach using planar 
and linear sections. Results from both the suggested novel method and the traditional method 
proposed by Standard ASTM E 112 were compared with the known values of grain size. The new 
method was assessed as a precise tool for grain size estimation even in such a complex morphology. 
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1.  INTRODUCTION 

1.1.  Grain size estimation in isotropic structure 
The grain structure, more precisely, its grain size, can be described by basic characteristic which is, in 
the 3D context, the mean grain volume Ev (Ev=1/NV, NV is the number of grains per unit volume) or 
the mean grain width Ew (the mean caliper or Feret diameter). These quantities are inaccessible by a 
direct measurement, the 2D and 1D approaches prevail and the “size” is represented by the mean 
planar profile area Ea (Ea=1/NA, NA is the mean number of profiles per unit area) or by the mean 
intercept length EL (EL=1/NL, NL is the mean number of grain intercepts per unit length of the test 
line). Ordinarily, the recommendations of the Standard ASTM E 112 [1] or similar EN ISO 643 [2] 
are used for an estimation of the mean grain volume from planar or linear sections. General 
stereological relations between NV, NA and NL can be written as follows [3], [4]: 
 NV  = c’(NA)3/2,    NV = c”(NL)3,    NA = c(NL)2. (1) 
The dimensionless scale invariant factors c, c’ and c” depend on the type of grain structure. For 
isotropic materials, the ASTM Standard assumes universal values c=0.788, c’=0.80 and c”=0.566. 
However, in general the factors c, c’ and c” depend on the structure characteristics, namely  
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where Ew is the mean calliper diameter and Es is the mean cell surface. 

1.2.  Anisotropic modification 
In the case of linear-planar anisotropic grain system, the plane and line sections in the main directions 
significantly differ and the grain size estimation is more difficult. Quantities NLx, NLy, NLz – numbers 
of grain intercepts per unit length parallel to x, y, z axes – should be measured. Similarly, quantities 
NAx, NAy, NAz characterize the numbers of profiles per unit area perpendicular to the x, y, z-axes. Then 
the corresponding mean intercept lengths EL•=1/NL• and the mean profile areas Ea•=1/NA• can be 
approximately evaluated. Standard ASTM E 112 recommends estimating the mean cell volume by the 
formula 

 353



 1/Ev = NV = 0.566 NLxNLyNLz. (3) 
A novel approach to the grain size estimation suggested in this paper is based on an idea that it is 
possible to convert a homogeneous strongly anisotropic tessellation to an “equiaxial” one by a simple 
transformation. Firstly, let us to define the ratios ty=NLy/NLx and tz=NLz/NLx. Conversion to the equiaxial 
tessellation can be achieved by the elongation of the anisotropic tessellation ty-times in y direction and 
tz-times in z direction. Formula (1a) estimates the grain size from the planar sections (note NAxt =NAyt 
=NAzt): 
NV = NVttytz = c’(NAxt)3/2tytz = c’(NAxt NAyt NAzt (tytz)2)1/2

 = c’(NAxttytz NAyttz NAztty)1/2.  
Hence  
 NV = c’(NAxNAyNAz)1/2. (4) 
Similarly, formula (1b) estimates grain size from linear sections (note NLxt =NLyt =NLzt): 
 NV = c”NLx NLy NLz .  (5) 
It is evident from comparison of the formulae (4) and (5) with (1a), (1b) that the same constants c’, c” 
are used in the relations between the estimates of NV obtained by profile or intercept counts but that 
the arithmetic means (relating to all possible sections) occurring in (1a), (2b) are replaced by the 
geometric means of estimates obtained in three suitably oriented mutually perpendicular section 
planes or lines. The same constant c occurring in equation (1c) also relates (NAxNAyNAz)1/3 and 
(NLxNLyNLz)2/3.  

1.3.  Voronoi tessellations 
A tessellation is the space filling system of cells (grains). The standard Voronoi tessellation is the 
result of simultaneous isotropic radial growth with constant rate from point nuclei (germs) arbitrarily 
arranged in the space. The growth is locally stopped whenever adjacent grains come into contact. 
Voronoi tessellations are good models of polycrystalline grain structures or cellular tissues. 
Properties of the Voronoi tessellation are defined by the spatial distribution of points (generators) of 
the generating point process. By changing its type, tessellations with a narrow (generators are point 
lattices and displaced point lattices - Fig. 1a), medium (Poisson Voronoi tessellation – PVT - 
generators are distributed uniformly at random - Fig. 1b) and broad distribution of cell sizes 
(generators are cluster fields - Fig. 1c) are obtained. 

           
   a)         b)     c) 
Figure 1: Planar sections of three different types of Voronoi tessellations. Grain size distribution 
extends from left to right. 
A spatial tessellation generates in its 2D and 1D sections the induced planar or linear tessellations. 
Only such induced tessellations are available for an examination in the case of real opaque materials 
and the properties of the original spatial tessellation must be estimated by means of suitable 
stereological formulas. However, all parameters of computer simulated tessellations can be 
determined with an arbitrary accuracy. Then it is possible to look for a simulated structure with 
similar properties of sections and to expect that also the relations between the induced and spatial 
structures will be similar. 

1.4.  w-s diagram 
It follows from equations (1and 2) that the important size characteristics influencing the relations 
between induced and spatial tessellations are the mean caliper diameter Ew and the mean cell surface 
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Es. They determine the intensities of induced Voronoi tessellations and, consequently, are the most 
natural parameters characterizing and classifying any spatial tessellation. For model tessellations, they 
can be found with an arbitrary accuracy by computer simulation.  
This is the basic idea of the w-s diagram (Fig. 2), which is a graphical representation of the proposed 
classification. It was originally introduced in [3] as a useful tool for the grain size estimation from 
planar and line sections. In the w-s diagram, any unit (i.e. Ev=1) tessellation is represented by the 
point {Ew, Es} in the {w,s} plane and the position of this point directly determines also the values of 
the c, c’ and c” parameters used in equations (1). 

 
Fig. 2: Central part of w-s diagram. 

Other characteristics of the examined tessellations 
(shape factors, quantiles, and, in particular, coefficients 
of variation CV v, CV v’, CV v” of the cell volume, 
profile area and chord length, resp.) are evaluated 
simultaneously and can be plotted as labels (marks) in 
selected points.  
Various w-s diagrams based on computer simulations are 
presented on http://fyzika.ft.utb.cz/voronoi/ws/ws.htm. 
The central part of the w-s diagram is shown in Fig. 2. 
Tessellations generated by displaced lattices (simple 
cubic – c, cubic body centred - bcc and face centred - 
fcc), Johnson-Mehl model (JM) and Neyman-Scott 
cluster fields (PG for Poisson globular fields, PS for 
Poisson spherical fields). HEX denotes the tessellations 
by regular hexagonal prisms (upper branch describes 
plates, the lower one rods) and PVT denotes the Poisson-
Voronoi tessellation. 
 

2.  EXPERIMENTAL 

2.1. Material 
Compression-moulded PVC pellets were used as a real 
anisotropic material suitable for examination. The mean 
pellets size was measured as 49 mm3. This material is 
formed by two basic components – paste-forming PVC 
and plasticizer. The pellet surfaces were covered by carbon 
paste to improve the recognition of pellet boundaries. 
Prepared blend was isothermally annealed and 
compression-moulded in the cylindrical mould using a 
manual press. From the resulting cylindrical moulding a 
rectangular prism specimen was cut (Fig. 3). Specimen 
sides were either perpendicular or parallel to the direction 
of deformation. Finally, the specimen surface was polished and scanned by a computer scanner. 
Obtained images of the surface structure were used as the base for the following analysis. 

   
Figure 3: Surface of the sample  

Let xyz be a coordinate system, axes x and y are horizontal and axis z is vertical. The compression was 
vertical, parallel to the axis z (Fig. 3). Thus, horizontal surfaces z1 and z2 of the specimen were 
perpendicular to the compression direction, whereas surfaces y1, y2 (perpendicular to y) and x1, x2 
(perpendicular to x) were parallel with the compression direction. 

3.  RESULTS AND DISCUSSION 

3.1.  Profile area measurement 
Images of sample sides were magnified 3×, a rectangular region of suitable area was selected and the 
number of profiles inside of this region was counted. The Gundersen frame [5] was used for the edge 
correction. Table 1 display the results of this analysis. 
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face perpen- 

dicular to 
profile area a 

[mm2] 
CV a NA 

[mm-2]
 line  

direction 
int. length L 

[mm] 
CV L NL

x 9.86 0.82 0.101  x 3.25 0.636 0.307 
y 9.14 0.73 0.109  y 3.34 0.647 0.299 
z 15.89 0.85 0.063  z 1.87 0.646 0.534 

 

 
Figure 4: Part of w-s diagram. Dashed 
line corespond c=0.66. LPG is 
globular clusters placed in simple 
cubic lattice, fcc is displaced face-
centered cubic lattice. Numbers at 
points denotes CV a. Disc is point in w-
s diagram proper to experimental 
structure. 

Now we must estimate the proper c’ and c” values. Using 
equation (1) we are able to compute from NA• and NL• 
corresponding c value c = 0.66. We have to find a tessellation 
with known c value (representing line in w-s diagram) and CV 
a near 0.8 [6].  In Fig. 4 is part of w-s diagram. It is obvious 
that proper parameters are c’ = 0.54 and c” = 0.29. Our 
structure is composed by grains of two types. The same are 
properties of tessellations generated by globular clusters – 
there are small cells near cluster centre and bigger external 
cells. Indeed our  point is on curve for globular clusters.  
Using formula (1a) and values of NA• from table, the number of 
grains per unit volume is 0.014 mm-3 (corresponding grain 
volume is 70 mm3 (formula (1b) and NL• return the same value 
– c’ and c” are connected by c).  These values are in good 
agreement with known cell volume 49 mm3. 
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