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ABSTRACT 
This paper describes one of possible approaches to control of MIMO control loops with utilisation of 
binding members and correction members. Binding members are used here for ensuring autonomy of 
control loop. Binding members are determined from so called main controllers, which are main 
diagonal elements of the transfer matrix of controller GR . The design of main controllers is carried 
out by any SISO method of synthesis. Correction members of transfer matrix of controller GKC serve 
for ensuring invariance of control loop and they are determined by using analogy of SISO branched 
control loops with measuring of dominant disturbance variable. Simulation verification was carried 
out for three-variable loop of a steam turbine. 
Keywords: MIMO control loop, control algorithm, autonomy, invariance 

1. INTRODUCTION 
At large numbers of controlled object (air-conditioning plants, distillation columns, steam boilers, 
turbines, etc.) several variables have to be controlled at the same time. In this case there is not larger 
member of independent SISO (single-input/single-output) control loop. These control loops are 
complex with several controlled variables where separate variables are not mutually independent. 
Mutual coupling of controlled variables is usually given by simultaneous action of each of input 
(manipulated and disturbance) variables of controlled plant to all controlled variables. These control 
loops are called MIMO (multi-input/multi-output) control loops and they are a complex of mutually 
influencing simpler control loops [2]. 

2. MIMO CONTROL LOOP 
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Figure 1. MIMO control loop with measurement of disturbance

We will consider MIMO control loop with 
measurement of disturbance (see Figure 1). 
GS (s), GSV (s), GR (s) a GKC (s) are transfer 
matrixes of a controlled plant, disturbance 
variables, controller and correction members. 
Signal Y(s) [n×1] is a vector of controlled 
variables, U(s) [n×1] is a vector of 
manipulated variables and V(s) [m×1] is a 
vector of disturbance variables. 

Transfer matrixes of controlled plant and of disturbance variables are considered in the following forms 
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Transfer matrixes of controller and of correction member are considered in these forms 
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2.1. Autonomy and invariance of control loop 
At synthesis of MIMO control loop, beside stability and quality of control, it is often required for control 
loop to be autonomous and invariant. In order to determine the conditions for autonomy and invariance we 
start from a command transfer matrix GW (s) and disturbance transfer matrix GV (s) [2], therefore 
  (3) ( ) ( ) ( )[ ] ( ) ( )ssss  s RS

-1
RSW GGGGIG +=

  (4) ( ) ( ) ( )[ ] ( ) ( ) ( )[ sssss  s KCSV
-1

RSV GGGGGIG S−+= ]
Autonomy 
It results from the equation (3) that the control loop is autonomous if it is ensured that the matrix 
GS (s) GR (s) is diagonal. On the base of this condition it is possible to derive the following relation 
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sij - algebraic supplements of separate elements of a transfer matrix of controlled plant GS (s)  
Rij  - separate members (binding members) of a transfer matrix of controller GR (s) 
Diagonal (main) controllers R11, R22, R33 etc. are usually known already from the first design of 
conception of control. The design of main controllers is carried out by any SISO method of synthesis. 
The above mentioned relation (5) is therefore used for calculation of all remaining members of matrix 
controller GR (s), i.e. for calculation of transfers of binding members. 
Invariance 
For ensuring absolute invariance it is necessary that the disturbance transfer matrix GV (s) (4) is zero. 
This is possible if the following relation is valid 
 ( ) ( ) ( )sss SV

1
KC GGG −= S  (6) 

At design of correction members, the task of which is to 
eliminate the influence of disturbance variable on 
control loop, internal couplings are omitted at MIMO 
control loop and thus n SISO branched control loop 
with measuring of a disturbance variable are gained. 
Connection of all these SISO control loops is the same 
and they differ only in separate transfers of controlled 
plants, controllers, correction members and disturbance 
variables [2]. Common connection of these control 
loops is presented on the following Figure 2. 

wi yi

vi

R ii Sii
uiei

SVii 

KCii 

Figure 2. Block diagram of SISO control loop 
with measuring of disturbance variable vi

Correction members KC, which serve for ensuring invariance of control loop, are determined on the base 
of the condition (6). The invariance of the control loop is ensured, according to the above mentioned 
method, by using analogy of SISO branched control loops with measuring of disturbance variable v. 
Transfer of correction members KC are gained by using the equation (6) in the following form 

 0 ,1, ≠>…<== ii
ii
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S
S
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SVii - separate members of transfer matrix of disturbance variables GSV (s) 
Sii - separate members of transfer matrix of controlled plant GS (s) 

2.2. MIMO control loops synthesis 
In practice the possible approximate solution of MIMO control loop is applied from analysis of 
MIMO control loop and really used control schemes in particular technological equipments [2]. One 
of the possible methods of solution of MIMO control loops synthesis is described in the following 
part of this paper. Generally it is possible to divide this solution into three parts 
• design of main (diagonal) controllers by any synthesis method of SISO control loops, i.e. design 

of parameters of main controllers for n SISO control loops (R1, R2, …, Rn),  
• ensuring autonomy of control loop via binding members of transfer matrix of controller GR(s), 
• ensuring invariance control loop by means of correction members KC by using n SISO control 

loops with measuring of disturbance variables. 

3. SIMULATION EXAMPLE 
3.1. MIMO controlled plant 
Steam turbine is a typical example of MIMO controlled plant. In this case is considered the turbine with two 
controlled withdrawals which drives electric generator supplying determined part of electric network (it 
means the turbine operates without phasing into power network). Here, the turbine represent three-variable 
control loop. The scheme of three-variable control loop of steam turbine is presented on the Figure 3. 
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Denominations on Figure 3 mean: ΔyVT , ΔyST , 
ΔyNT - change of opening position of control 
valves of high-pressure, medium-pressure and 
low-pressure part of turbine, Δm’01, Δm’02 -
 change of mass flow of withdrawn steam, Δp01, 
Δp02 - change of steam pressure in corresponding 
withdrawals, Δω - change of angular speed of 
turbo-generator, ΔMG - change of electric load of 
turbo-generator. 
Controlled variables are Δω, Δp01, Δp02, 
disturbance variables ΔMG, Δm’01, Δm’02  and 
manipulated variables are ΔyVT , ΔyST , Δ yNT . Figure 3. Three-variable control loop of steam turbine
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3.2. Mathematical model of the controlled plant 
Resulting differential equations for creating mathematical model of the plant were gained already 
after deriving and using linearization from the project OTROKOVICE elaborated by the firm 
ALSTOM Power [1]. Differential equations were re-write into better-arranged form by introducing 
relative values (with regard to starting stable state-operational, i.e. to calculated point) at which 
relation of values can be generally written in the form ϕ X = ΔX ⁄ (X)0. Then, the Laplace transform of 
an output (controlled) variable was given by the following relation 
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3.3. Synthesis of three-variable control loop of a steam turbine 
The principal described above (see paragraph 2.2) is used at solution of synthesis of the three-variable 
control loop. First transfers of main controllers R11, R22, R33 are determined for transfer functions S11, S22 a 
S33 then autonomy of control loop (5) is being solved and in the end fulfilment of the condition of 
invariance (approximate invariance) of control loop is ensured by using equation (7). At design of 
parameters of main controllers the following methods were used: Ziegler Nichols step response method 
[2], method of desired model (method of dynamics inversion) [5], polynomial method of synthesis - 1DOF 
(1 degree of freedom) configuration [4]. In the next part of this paper one chosen method for design of 
parameters of main controllers, i.e. the Ziegler Nichols step response method, is used. 
Transfer matrix of controllers GR (s) with utilization of Ziegler Nichols step response method and 
transfer matrix of correction members GKC (s) are given by the equation (11). 
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Simulation results 
Simulation of three-variable control loop of a steam turbine with utilization of one chosen SISO 
synthesis method is presented on the following figure (see Figure 4) [3].  

Figure 4. Simulation of control loop with utilization of Ziegler Nichols step response method 
 
Designation of variables on figure corresponds to definite variables existing in the three-variable control loop of 
steam turbine, i.e. 

0230121 ,, ppω yyy ϕϕϕ →→→ , 
02'301'21 ,, mmGM vvv ϕϕϕ →→→ ,  

NTySTyVTy uuu ϕϕϕ →→→ 321 ,,  

3.4. Evaluation of simulation experiments 
It is obvious from the simulation of control process presented above (see see Figure 4) and from other 
simulation experiments that the condition of autonomy was fulfilled. Fulfilment of this condition was 
ensured by means of using binding members Rij (aside-from-diagonal elements of transfer matrix of 
controller GR (s)). It is also obvious from the simulation process control that the control loop is invariant 
or let us say approximately invariant, i.e. that influence of disturbance variables is eliminated only at 
steady state. Fulfilment of the condition of invariance was ensured by means of correction members KCii 
which are considered for elimination of influence of dominant disturbance variables by means of using 
analogy of SISO branched control loop with measurement of disturbance v. 

4. CONCLUSION 
It was described one of possible procedure to control of MIMO control loop. Simulation verification of 
chosen procedure of control is presented on three-variable control loop of steam turbine. At first our 
method deals with setting-up of main (diagonal) controllers, then determination of binding members for 
ensuring autonomy and in the end calculation of correction members for ensuring invariance. 
The designed method shows the combination of classical way to ensure autonomy of control 
loop via binding members and the use of the method of SISO branched control loops with 
measurement of dominant disturbance variables to ensure of invariance of control loop. 
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