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ABSTRACT 
Environmental concerns, competition, economic factors, etc. motivates both the academicians and 
practitioners to study on reverse logistics activities. Reverse logistics contains activities such as 
product returns, recycling, substitution, reuse, disposal, refurbishment, repair and remanufacturing. 
Product returns constitutes an important portion in total company costs. A company can take 
competitive advantage with cost reductions in product returns in terms of transportation, inventory 
and warehousing costs. Determining convenient quantities and location places for centralized return 
centers is an important decision in reverse logistics networks. In this paper a heuristic approach is 
proposed for this decision making area. 
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1. INTRODUCTION 
Due to the threatening level of environmental problems, environmental initiatives, which are enforced by 
governments, customers or companies themselves, have become an obligation. As a part of environmentally 
conscious initiatives, reverse logistics has taken considerable attention both from academicians and 
practitioners. Rogers and Tibben-Lembke [1] defined reverse logistics (RL) as “the process of planning, 
implementing and controlling the cost effective flow of row materials, in-process inventory, finished goods 
and related information from the point of origin for the purpose of recapturing value or proper disposal”. 
Traditionally, the term of “logistics” is perceived only with the forward side of the concept. On the other 
hand, many reasons, such as manufacturing returns, commercial returns (B2B and B2C), product recalls, 
warranty returns, service returns, end-of-use returns, end-of-life returns cause reverse direction product 
corridors and this additional reverse side of the logistics provides a closed-loop [2]. Usually, RL can be 
perceived as exactly the reverse of the forward logistics (FL), however, in lots of decision making areas, RL 
is not similar to the FL. RL may have different channels, collection points, decision making units, product 
characteristics, etc.  Differences between forward and reverse logistics are in Table 1 [3]: 

Table 1. Differences between forward and reverse logistics [3] 
Forward Logistics Reverse Logistics 
Forecasting relatively straightforward Forecasting more difficult 
One to many transportation Many to one transportation 
Product quality uniform Product quality not uniform 
Product packaging uniform Product packaging often damaged 
Destination/routing clear Destination/routing unclear 
Standardized channel Exception driven 
Disposition options clear Disposition not clear 
Pricing relatively uniform Pricing dependent on many factors 
Importance of speed recognized Speed often not considered a priority 
Forward distribution costs closely monitored by accounting systems Reverse costs less directly visible 
Inventory management consistent Inventory management not consistent 
Product lifecycle manageable Product lifecycle issues more complex 
Negotiation between parties straightforward Negotiation complicated by additional considerations 
Marketing methods well-known Marketing complicated by several factors 
Real-time information readily available to truck product Visibility of process less transparent 
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A company can take competitive advantage with cost reductions in product returns in terms of 
transportation, inventory and warehousing costs. Determining convenient quantities and location 
places for centralized return centers is an important decision in reverse logistics networks. Figure 1 
represents general structure of a reverse logistics network. In this paper a heuristic approach is 
proposed for this decision making area. In the next section, the genetic algorithms is briefly explained. 
In the third section, a reverse logistics network design application is given. 
 

 
Figure 1. General structure of a reverse logistics network  [4] 
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2. GENETIC ALGORTIHMS (GAs) 
The GAs were firstly proposed by (Holland)  in 1960s inspired from the Darwin’s theory of evolution. 
In nature, weak and unfit species within their environment are faced with extinction by natural 
selection. The strong ones have greater opportunity to pass their genes to future generations via 
reproduction. In the long run, species carrying the correct combination in their genes become 
dominant in their population. Sometimes, during the slow process of evolution, random changes may 
occur in genes. If these changes provide additional advantages in the challenge for survival, new 
species evolve from the old ones. Unsuccessful changes are eliminated by natural selection [5].  
GAs are stochastic search techniques based on the mechanism of natural selection and natural 
genetics. GAs, differing from conventional search techniques, start with an initial set of random 
solutions called population. Each individual in the population is called a chromosome, representing a 
solution to the problem at hand. A chromosome is a string of symbols; it is usually, but not 
necessarily, a binary bit string. The chromosome evolves through successive iterations, called 
generations. During each generation, the chromosomes are evaluated, using some measures of fitness. 
To create the next generation, new chromosomes, called offspring, are formed by either, (a) merging 
two chromosomes from current generation using a crossover operator or (b) modifying a chromosome 
using a mutation operator. A new generation is formed by (a) selecting, according to fitness values, 
some of parents and offspring and (b) rejecting others so as to keep the population size constant. Fitter 
chromosomes have higher probabilities of being selected. After several generations, the algorithms 
converge to the best chromosome, which hopefully represents the optimum or sub optimal solution to 
the problem [6]. 
Given a clearly defined problem to be solved and a bit string representation for candidate solutions, a 
simple GA works as follows [7]: 

1. Start with a randomly generated population of n l-bit chromosomes (candidate solutions to a 
problem). 

2. Calculate the fitness f(x) of each chromosome x in the population.  
3. Repeat the following steps until n offspring have been created:  
 3.1. Select a pair of parent chromosomes from the current population, the probability of 

selection being an increasing function of fitness. Selection is done “with replacement”, meaning that 
the same chromosome can be selected more than once to become a parent. 

 3.2. With the probability pc (the “crossover probability” or “crossover rate”), cross over the 
pair at a randomly chosen point (chosen with uniform probability) to form two offspring. If no 
crossover takes place, form two offspring that are exact copies of their respective parents. (Note that 
here the crossover rate is defined to be the probability that two parents will crossover in a single point. 
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There are also “multipoint crossover” versions of the GA in which the crossover rate for a pair of 
parents is the number of points at which a crossover takes place.) 

 3.3. Mutate the two offspring at each locus with the probability pm (the mutation probability 
or mutation rate), and place the resulting chromosomes in the new population. 

 If n is odd, the new population member can be discarded at random. 
4. Replace the current population with the new population. 
5. Go to step 2. 
 

3. AN APPLICATION 
In this paper we investigated the Min  et al. [8]’s article and their mixed integer linear programming 
model is utilized for a different application. The same chromosome representation is used with the [8] 
and can be seen from the Figure 1. The first part of each four-bit group represents the opening/closing 
decision for each collection point, i.e., 1 represents the opening decision, 0 represents the closing 
decision. The remaining three genes of the group represent the open days of the collection point. The 
last part of the chromosome is related with the opening/closing decisions of the centralized return 
centers. Table 2 contains the input parameters utilized in the solution. 

cp1 cp2 cp3 ... cp8 cp9 cp10 crc1 crc2 crc3 crc4 crc5 
1 0 1 0 0 0 0 0 1 0 0 1 ... 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 
 days  days  days ...  days    days  

Figure 1. The chromosome representation of the model 
Table 2. Input Parameters [8] 

Parameter Index Value 
Annual cost of renting an initial collection point a $200 
Daily inventory carrying cost per unit b $0,1 
Working days per year w 250 
Unit handling cost at the collection point h $0,1 
Cost of establishing a centralized return center qk $3000 
Capacity of centralized return center mk 1000 units 
Service coverage l 25 miles 
Unit standard transportation cost E 1 
Discount rate with respect to shipping volume   
 α1 0,8 
 α2 0,6 
 p1 200 units 
 p2 400 units 
Penalty rate with respect to the shipping distance   
 β1 1,1 
 β2 1,2 
 q1 25 miles 
 q2 60 miles 
Minimum number of established collection points z 1 
Minimum number of established centralized return centers g 1 

In the Figure 2, the locations of the customers (cust), central return centers (crc) and the collection 
points (cp) can be seen.  
Table 3 shows the coordinates of the central return centers and collection points and Table 4 shows 
the coordinates of the customers. 

Table 3.  The coordinates of the central return centers and collection points 
Site coordinate Site coordinate Potential sites for initial  

collection points x y 
Potential sites for central 
return centers x y 

cp1 42,39 63,09 crc1 57,66 8 
cp2 58,6 13,25 crc2 21,83 36,2 
cp3 30,85 24,95 crc3 31,73 29,31 
cp4 12,57 29,81 crc4 58,54 29,56 
cp5 31,06 39,86 crc5 27,53 50,71 
cp6 61,61 11,6    
cp7 54,72 33,19    
cp8 33,65 5,29    
cp9 30,24 59,17    
cp10 42,06 55,81    
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Table 4. The coordinates of the customers 
Coordinate No 
x y 

Daily  
demand 

1 10,95 10,22 21 
2 2,81 54,55 33 
3 61,8 55,87 17 
… … … … 
25 38,66 47,33 45 
26 2,28 52,23 6 
27 59,53 47,48 32 
28 62,25 42,78 11 
29 39,03 50,84 9 
30 32,55 36,31 4 
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In the Figure 3, the final locations of the collection points, central return centers and customers can be 
seen. The final chromosome representation is as “101011000000101100000000101011001011000000001” and 
the value of the objective function is “308232”. In the best solution, we have ever reached two customers 
can not be satisfied and a objective value is punished with additional 200000, thus, the real cost value is 
108232 unit.  The customers which can not be satisfied are customer two and customer twenty-four.  The 
2th customer’s distance to the central return center is 26,596 miles and the 24th customer’s distance to 
central return center is 28,134 miles, and they can not be satisfied, because of their distances.  

Figure 2. Initial locations of the collection 
points, central return centers and 

Figure 3. Final locations of the collection 
points, central return centers and 

 
4. CONCLUSIONS 
Due to the threatening level of environmental problems, environmental initiatives, which are enforced 
by governments, customers or companies themselves, have become an obligation. As a part of 
environmentally conscious initiatives, reverse logistics has taken considerable attention both from 
academicians and practitioners. In this paper, a reverse logistics network design problem is 
investigated and an illustrative example is presented. Future works may consider the usage of the 
other heuristics such as Lagrangean, Scatter Search, Tabu Search, etc. for this problem area. Also, a 
comparison of the heuristics for reverse logistics networks may be prepared.  
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