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ABSTRACT 
Spiral wire rope strands and overhead electrical conductors are examples of helical wire assemblies. 
The use of these helically wound wires constitute a wide class of important engineering components. 
When they are subjected to axial loads (tensile and torsional), these structures may still exhibit the 
helically symmetric characteristic after loading. For this reason, this feature can be used to simplify 
the analysis of these structures and to reduce model size in numerical simulations. In this paper, the 
formulation of helically symmetric boundary conditions is used and a general strand model using the 
finite element method (FEM) is presented. The model is capable of taking into account the effects of 
tension, shear, torsion, contact, friction and possible local plastic yielding and has been successfully 
used to predict the global behavior of simple straight wire rope strand as well as the stress 
distribution, which are very difficult to predict analytically. As most of the strand models, the length 
of the strand is assumed sufficiently long for the clamping conditions to be negligible. The finite 
analysis results showed excellent agreement with the analytical theory of Costello and the 
experimental results obtained by Utting and Jones [6, 7]. 
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1.   INTRODUCTION 
Steel wire ropes are critical load-bearing components in a wide range of applications such as cranes, 
lifts, mine haulage, etc. A wire rope is a complex component usually consisting of six or more strands 
in helical form around a core made of fiber or a core which itself is a small wire rope of different 
construction. Each strand consists of a number of wires laid in helical form around a strand core 
which may be a single wire or a group of wires. Wire strands and ropes are most commonly used in 
applications that require a combination of tensile loading and relatively low bending rigidity, such as 
in lifting devices like cranes. There are many parameters which can predict the effects of possible 
variations of these parameters on the performance of the strand. The influence of more complicated 
factors such as plasticity, contact stress and friction etc. on the behavior of ropes is very difficult to 
predict analytically. Typical tensile loading of wire strands, cords, and ropes has been studied by 
many researchers. There are many of published studies on stress analysis, life prediction for wire 
ropes [1-7]. It has been noted however that these factors may have strong influence on the mechanism 
of rope failure [1, 2]. Therefore, there is requirement for a general and accurate strand model which is 
capable of taking into account the complicating factors noted above. 
 
2.   EXTRACTION OF MODEL 
The configuration of the simple straight strand analyzed in this paper is shown in Fig. 1. The strand 
consists of a straight circular centre wire and m helical wires (m = 6 in this study). Tension, shear, 
bending and twist deformations develop simultaneously together with local contact deformation when 
the strand is subjected to an axial load [3]. If a structure and its load exhibit some form of symmetrical 
and/or repetitive nature, then the analysis can be reduced to model a representative sector of it, called 
a "basic sector". A basic sector must have "matching edges", which means that there exists 
corresponding nodes on each edge, geometrically rotated by a sector angle and/or offset by a 
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repetitive length. By analyzing a properly selected basic sector, the responses of the complete 
structure can be obtained. Taking advantage of the helical symmetry of a strand, a slice of 1/12 of a 7-
wire strand can be chosen as the basic sector [4].  

 
Figure 1. Simple 7-wire rope strand and geometric model of basic sector 

 
Figure 2 shows a typical finite element mesh of the model. Figure 3 provides a more detailed view in 
the vicinity of local contact area. Since the stresses vary rapidly in this area, a much finer mesh was 
used. A commercial finite element analysis software (ANSYS) was used throughout [2]. Three-
dimensional solid brick elements were used for structural discretization. This element is defined by 
eight nodes having three degrees of freedom on each, i.e. translations in x, y and z directions. Only 
one element division is needed in the strand axial direction to consider the helical effect, due to the 
accurate boundary conditions, as will be discussed in the following section. Contacts between the 
centre and helical wires have been simulated using contact elements between the surfaces. They can 
simulate general surface-to-surface contact with Coulomb friction sliding. Precise boundary 
conditions are maintained by using the constraints equations which relate the displacements of the 
corresponding nodes on the top and bottom cross-sections of the strand. 

 
 

Figure 2. Finite element mesh of rope basic sector 
 
3.   FORMULATION OF CONSTRAINT EQUATIONS 
Constraint equations define the relationships between a set of degrees of freedom within the model 
mesh. The strand extension due to an applied axial strain ε, the twist angle of the strand due to an 
applied twist rate Γ and the helical rotation angle between the top and bottom cross-sections can be 
defined as follows 
 ss zz εδ =   , ss zΓ=δθ  , pzss /2πθ = .  (1) 
For general helical symmetry (see Fig. 3), constraint equations between the displacements of the 
corresponding nodes n(r, θ, z) and n'(r, θ+θs, z+zs) can be expressed as 
 u′ = Ru + uΓ + uε   (2) 
where u = (ux, uy, uz)T is the displacement vector of node n,  u′ = (ux′, uy′, uz′)T is the displacement 
vector of the corresponding node n' and uΓ = ( -2rsin(δθ/2)sin(θ + θs + (δθ/2)), 2rsin(δθ/2)cos(θ + θs 
+ (δθ/2)), 0)T is the relative rotational displacement vector, uε = (0, 0, δzs)T is the relative extension 
displacement vector and R the rotational matrix  
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The four radial edge lines L1, L1', L2 and L2' shown in Figure 2 are initially straight and perpendicular 
to the strand axis. They should remain straight and perpendicular to the strand axis after deformation. 
The sector angle of 180°/m (30° for a 7-wire strand) will remain unchanged on both top and bottom 
cross-sections. 
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Figure 3. Helical symmetric constraint relationship 

 
Consider now a pair of corresponding nodes on the corresponding radial lines; on the one hand they 
are on helically symmetric boundaries, hence should obey the helical symmetric relationship; on the 
other, they are on the four radial edge lines, therefore they should obey the straight line deformation 
relationship as well. Degree of freedom constraints to eliminate rigid-body movement were also 
introduced on these nodes. 
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4. FINITE ELEMENT ANALYSIS RESULTS 
Responses to axial and torsional loads for a simple 7-wire strand have been analyzed using the 1/12-
strand finite element model developed. The geometry data of the strand is given in Table 1. The Von 
Mises yield criterion was assumed. A bilinear isotropic hardening material model [2] has been used. 
Geometric non-linear effects were also taken into account. The basic parameters for the 1/12-strand 
finite element model are summarized in Table 1.  
 
             Table 1. The geometry data and parameters of the model 

Strand diameter 
Center wire diameter 2R1
Helical wire diameter 2R2
Pitch length p 
Helical angle of the strand α 
Strand length used in the model zs 
Friction coefficient μ 

11,4 mm 
3,94 mm 
3,73 mm 
115 mm 

78,2o

%5 R1 
0,115 

Total number of nodes 
Total number of solid elements 
Young’s modulus E 
Plastic modulus 
Yield stress 
Limit stress 
Poisson’s ratio 

1516 
684 
188 GPa 
24,6 GPa 
1,54 GPa 
1,80 GPa 
0,3 

 
The value for Young's modulus is lower than would be conventionally expected for steel, but is based 
on the experimental results of Walton [5] and Utting and Jones [6]. The value for the plastic modulus 
was determined from the results of Walton [4, 5] at the lower end of the plastic strain range. Two 
extreme load cases of fixed end (Γ = 0) and free end (M = 0) were analyzed. A strand axial strain of 0,015 
was applied in increments of 0,001 in the analysis. The results have been compared to those obtained using 
Costello's theory [3], and the experimental data reported by Utting and Jones [7]. Figure 4a shows the 
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load as a function of the applied axial strain for both the fixed and free end cases. Figure 4b gives the 
variation of torque with load for the fixed end condition and Figure 4c shows the dependence of strand twist 
rate against load for the free end condition. The finite element analysis predicts the same strand responses 
in the linear region as given by Costello's theory and the test results obtained by Utting and Jones [6, 7]. In 
the non-linear region, the results from the present FE model fit the test data very well. 
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Figure 4. Axial load distribution on wire rope 
 
As would be expected, the ratio of peak stress: average bulk stress decreases after local yielding has 
occurred. Figure 5 shows the axial stress σz distribution along the same radial line. With the same strand 
axial strain, the helical wires with a free end condition carry less axial load than with a fixed end. This 
is the reason that the axial (tensile) rigidity with the free end condition is less than that with a fixed 
end. 
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(a) Fixed – end  condition                                    (b) Free – end condition 

Figure 5. Stress distribution, σz along a radial line 
 
5. CONCLUSION 
In the implementation of the finite element analysis in this study, accurate boundary conditions were 
established and hence more accurate results obtained. By comparison with elasticity theory of 
Costello and experimental data obtained by Utting and Jones, the finite element model developed in 
this study has shown excellent agreement in the determination of the global responses of a rope 
strand. Furthermore, this model can provide information about non-linear effects, such as contact 
stresses, friction and plastic deformation which are very difficult to address theoretically, but play 
important roles in the failure mechanism of wire strand and rope. 
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