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ABSTRACT 
The time delay in transport of material and energy is an inseparable part of many real industrial 
processes. Unfortunately, the presence of time-delay terms itself almost always brings problems in 
control and, quite naturally, the situation is even more complicated if this delay is uncertain. The 
source of the uncertainty can arise e.g. from simplifications during mathematical modelling, changes 
in physical parameters or various operational conditions. The main aim of the contribution is to show 
capabilities of robust algorithms designed via an algebraic approach in control of systems with 
parametrically uncertain time delay. The robust stability of the closed loop is graphically analyzed 
using the value set concept and the zero exclusion condition. 
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1. INTRODUCTION 
The time-delay systems have been the envy of control researchers and engineers attention for decades. 
The ground of this interest lies in the common presence of various delays in real control loops which, 
quite naturally, has brought the requirement of adequate control algorithms. Unluckily, time delay 
substantially deteriorates the control conditions and, moreover, if the delay is uncertain, the issue of 
quality control becomes even more complex. 
An effective solution of this problem is represented by the utilization of continuous-time robust 
controllers. A possible approach to robust control design is represented by fractional approach 
developed in [9, 4] and utilized (not only) for time-delay systems e.g. in [5, 6, 7]. This technique is 
based on general solutions of Diophantine equations in the ring of proper and stable rational functions 
(RPS), Youla-Kučera parameterization and conditions of divisibility and it supposes approximation of 
time-delay term. 
This contribution is focused on control of single-input single-output systems with parametrically 
uncertain time delay using the regulators computed via proposed control design method. The robust 
stability of closed-loop characteristic quasipolynomials is investigated through the value set concept 
in combination with the zero exclusion condition. The design process and robust stability analysis is 
demonstrated on the example of first order uncertain dominant time-delay plant and PID controller. 
 
2. DESCRIPTION OF THE UNCERTAIN TIME-DELAY PLANT 
The controlled process is assumed to be given by first order time-delay transfer function: 
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where gain 5K = , time constant 10T =  and time-delay can vary within given interval 5, 35Θ∈ . 
The delay in the nominal system, used for control design, is fixed to 20Θ = . Furthermore, for the 
sake of applicability of this transfer function in algebraic synthesis method, it is necessary to 
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approximate the time-delay term. The well-known and popular Padé approximation can be employed 
for this purpose. The use of its first order (linear) version leads to the function: 
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3. CONTROLLER DESIGN 
Suppose the conventional feedback control system with plant ( ) ( ) ( )G s b s a s=  and controller 

( ) ( ) ( )C s q s p s= . The fractional approach developed by Vidyasagar  [9] and Kučera  [4] and refined in 
[5, 6, 7] is based on general solutions of Diophantine equations in RPS. The conversion from common 
polynomial representation to the RPS notation can take the form: 
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where { }max deg( ),deg( )n a b=  and 0m > . The parameter m, entering into synthesis process, 
represents the tool which will be subsequently used for influencing the properties of closed-loop 
control responses. 
The first and definitely the most important requirement is to ensure the stability of control loop. 
Stabilizing controllers are given by ratio (no longer with accentuated complex variable s): 
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where T is free in RPS, 0 0P BT+ ≠  and 0P , 0Q  is some particular solution of Diophantine equation: 

 1AP BQ+ =  (5) 

The formula (4) says that there exists either infinite amount of stabilizing regulators or none and it is 
called Youla-Kučera parameterization of controllers. 
Another important property is the convergency of tracking error e to zero. Working on an assumption 
that no disturbances affect the control system and reference signal is given by w ww G F= , it follows: 
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Algebraic analysis of (6) results in fact that for zero tracking error, the expression wF  must divide 
product AP . The divisibility in RPS is defined somewhat abstractly: x y  divides x y% %  if and only if 
all zeros of x y  located in right complex half plane (including imaginary axis and infinity) are also 
zeros of x y% % . 
The control design is illustrated on the following example. The last form of function (2) determines 
the required case of second order controlled plant, generally:  
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Then, the basic Diophantine equation (5) can be expressed as: 
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Its particular solution is: 
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Youla-Kučera parameterization purveys all solutions of the equation (8): 
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Suppose the step changes in reference signal and thus ( )wF s s m= + . Now, it is necessary to choose 
such controller from the set (10) in order to wF  divides AP . Hence, it has to be found 0T t=  so that 
term s can be separated from the numerator of P. After certain adjustment it follows that complying 0t  
is the one and only, scilicet 0 0 0t p m b= − . By its substitution into (10), the numerator and 
denominator of the controller, which will not only stabilize the controlled plant in closed-loop system 
but it will also guarantee the asymptotic tracking of the reference signal, are obtained: 

 
( ) ( )

( ) ( )

2 1
0 0 2

0 1
2 2

2 0 0 0
1 0 1 1 0 0 2

0 0 0 2 1 0
2 2

bs s p m p m
b s p sP

s m s m

p m p m p ms q s q q m a a q m
b b b q s q s qQ

s m s m

⎛ ⎞
+ + −⎜ ⎟

+⎝ ⎠= =
+ +

⎛ ⎞ ⎛ ⎞
+ + + + + +⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠= =
+ +

%

% % %

 (11) 

Thus, the transfer function of final PID-like feedback controller is in the form: 
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with parameters: 
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4. ROBUST STABILITY ANALYSIS AND CONTROL SIMULATIONS 
Assume the approximated nominal plant (2) and the tuning parameter 0.06m = . Utilization of 
relations from the previous chapter leads to the controller: 
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The question is, if this regulator stabilizes the whole family of true systems (1) for all possible values 
of uncertain time-delay, i.e. if the control system is robustly stable. This problem can be solved using 
the graphical test, which relies on depiction of the closed-loop characteristic (quasi)polynomial value 
sets and application of the zero exclusion condition. An array of information about robustness of 
systems with parametric uncertainty and related topics can be found in [1, 2, 3, 8]. The family of 
closed-loop characteristic quasipolynomials is given by: 

 ( )( ) ( )2 2
1 2 1 0( , ) 1 ; 5, 35s
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Roughly speaking, the value set for one fixed frequency ω  can be obtained by substitution of s for 
jω  in the family (15) and letting the delay Θ  range over the prescribed set. The figure 1 shows such 
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value sets plotted in complex plane for 0, 0.15ω =  with step 0.001. The quasipolynomial (15) and 
thus also whole control system is robustly stable, because the family has a stable member and the 
origin of the complex plane is excluded from the value sets. The robust stability is confirmed also by 
figure 2, where final set of closed-loop control responses of the plant (1) with the regulator (14) can 
be seen. This simulation was obtained under conditions as follows: The 301 “representative” systems 
were chosen by sampling the time-delay term from the set of uncertain plants (step 0.1, i.e. 301 
systems for simulation + highlighted nominal one). Furthermore, the step load disturbance 0.1−  
affects the input of the controlled system during the last third of simulation time. 
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Figure 1. The value sets of uncertain characteristic 
quasipolynomial (15) 
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Figure 2. The set of control responses 

 

5. CONCLUSIONS 
The paper has presented the capabilities of continuous-time robust algorithms designed through an 
algebraic approach in control of systems with parametrically uncertain time delay. The essential 
theoretical foundations are followed by an illustrative example with dominant time-delay plant. 
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