
 353

13th International Research/Expert Conference 
”Trends in the Development of Machinery and Associated Technology” 

TMT 2009, Hammamet, Tunisia, 16-21 October 2009 
 
 

SIMULATION OF THE TFACO PROCESSOR  
 

 
Nebojša Lj. Stanković, Dr. Siniša S. Ranđić 

Technical Faculty, Čačak 
65, Svetog Save, Čačak 

Serbia 
 
 

ABSTRACT 
This paper describes an application which provides the simulation of the functioning of the central 
processor (CPU). The simulation provides visual representation of anything occurring both at the 
level of arithmetic logic units (ALU) for different arithmetic and logical operations and at the level of 
bits.  Visualization is a very efficient teaching method which makes it possible for students to acquire 
new knowledge successfully, and that is the reason why this method has been increasingly applied in 
the process of education in recent time. The application is realized using the Microsoft Visual Basic 
6.0. programming language. 
Keywords: central processor, arithmetic logical unit, simulation, visualization, education. 
 
1. INTRODUCTION 
As computer systems have been developed, it is necessary to acquaint as many users as possible with 
complex operations that occur in the computer. Consequently, along with the development of  
computers, the simulation techniques whose goal was to illustrate 'how a computer works' were also 
being developed.  The processes occurring in a computer, particularly the functioning of the central 
processor unit, memory, bus, and input/output units are visually represented. Computer system 
simulation had two main tasks: to educate users to understand what processes occur in the system and 
to enable research aimed at further development, using the simulation of specific situations which are 
important for the computers system [1, 2]. 
This paper describes an application which provides the simulation of the arithmetic logic unit (ALU) 
as an integral part of processor TFaCo [1]. The simulation provides visual representation of anything 
occurring both at the level of arithmetic logic units (ALU) for different arithmetic and logical 
operations and at the level of bits. 
 
2. PROCESS SIMULATION  
Simulation has been developed as a group of five 
applications which visualize how the central processor 
works, starting from simpler processes and than moving 
on to more complex ones (Figure 1).  
The first two applications are simulators intended for 
users with elementary knowledge, and they visualize the 
synthesis of the computer architecture. The third and the 
fourth applications are demonstrations of how the 
program sequence works with and without memory. The 
fifth application is a simulator intended for advanced 
students. It represents the solution to processor  TFaCo 
architecture created by the authors of this paper. All 
these applications offer a graphic interface for the users and provide plenty of commentary and visual 
effects. 

 
 

Figure 1. Selection of Simulation 



 354

 
 

Figure 3. SIM 1 - Arithmetic Operation ADD  
(Final Result)

 
 

Figure 4. SIM2 - Logical Operation OR 

The program is created in the Microsoft Windows XP Professional operating system and it uses the 
MS Visual Basic 6.0 [3] programming language. The hardware used for executing and testing the 
simulation is Pentium 4 with RAM of 512 MB and an integrated graphic card. 
 
2.1. SIM1 - Arithmetic operations  
This is a simulator that does not require 
previous knowledge and its task is to explain 
it to the user how CPU executes arithmetic 
operations at the level of bits. It should 
familiarize users with the binary language of 
computers. The user enters the selected 
whole 16.bit binary numbers, selects one of 
three mathematical operations (addition 
ADD, subtraction SUB or multiplication 
MUL), confirms the button WRITE and then 
selects an arithmetic operation. In order to 
execute these arithmetic operations, the 
numbers are first moved to the first 
complement and then to the second one. 
Figure 2 presents the layout of the window 
after the selection of arithmetic operation of 
addition (ADD) and moving the numbers A 
and B into the first, or the second 
complement. 
Now the operands are ready to execute the 
operation of addition. After the confirmation 
of the button MAKE, the window ADD 
NUMBERS is opened. Addition of the two 
numbers written in the second operand is 
simulated in three steps. First (STEP1),  
numbers are written in the registers, then, 
(STEP2) the digits of the same weight are 
added, including the transfer. At the 
beginning of the simulation the bit of the 
first operand is illuminated, as well as the bit 
of the same value of the second operand 
whereupon the result is written in the bit of 
the same value of the result. The realized 
transfer is written down as well. After the completion of the second step the button STEP3 is 
confirmed, which gives the layout of the final result. The 
final result is obtained by removing the transfer bit from 
the result whereupon it is checked whether any exceeding 
occurred (Figure 3). 
 
2.2. SIM2 - Logical operations  
After starting this simulator, the user must select one of 
the offered logical operations. The table of truthfulness 
appears for the selected operation, along with its graphic 
symbol, and the process of simulation begins. The bit of 
the number (operand) A is illuminated whereupon the 
corresponding result of the selected logical operation from 
the table of truthfulness (column Z) is illuminated. 
Finally, the value equal to the previously illuminated 
result is written in the register Z. Figure  4 shows the final 
result of the logical operation OR, which is applied to operands A and B. 

 
 

Figure 2. SIM 1 - Arithmetic Operation ADD 
(Complementing) 



 355

 
Figure 5. SIM 3 - Program sequence without memory 

 
Figure 6. SIM 4 – Program sequence from memory 

2.3. SIM3 - Program sequence without memory  
Using the example of addition of two 
numbers, this simulator demonstrates 
to users stepwise transfer of data 
from the input devices, via ALU, to 
the output devices, but without using 
memory (Figure 5). To demonstrate 
the addition of two numbers, numbers 
23 and 25 are used. Their binary 
symbols are 10111 and 11001. After 
the confirmation of the button 
START, demonstration starts and 
proceeds in eight steps. The action 
occurring within each step is 
monitored in "STEPS", while in the 
demonstration picture every step is 
labelled by numbers 1, 2 …. For 
example, during the step 6 numbers 
are entered in ALU, so that during the 
following step 7 numbers are added and the result is written in register A. 
 
2.4. SIM4 - Program sequence from memory  
Using the example of the addition of the 
same numbers, as in the case of the third 
application (demonstrator), this is a 
demonstration which gives a detailed 
visualization of how CPU functions, 
introducing memory, instruction register 
(IR), programming counter (PC) and 
memory address register (MAR). 
After the confirmation of the button 
START, the execution of the simulation 
begins. The beginning value of the 
programming counter is the address of 
the first instruction (LDAC 0). MAR 
accepts the address from the PC and 
finds the corresponding memory 
location. The content of the memory 
location is sent to IR,it is then decoded, 
and, depending on the instruction, the 
action is executed. As the first 
instruction is LDAC 0, the memory 
content from the location 0 should be 
forwarded to the accumulator. The instruction is executed in two memory cycles. Upon the completion 
of this, instruction number (23) is in the accumulator. In order to add the two numbers, the 
accumulator ACC and the register R are used.  The first number, which is in the accumulator, should 
be saved and added to another number. It is for this reason that the first number is forwarded to the 
register R, using the instruction MVAC. The accumulator is then loaded with another number (25), 
using the instruction LDAC 1. In this manner, the first number is placed in the register R, while the 
other one is in the accumulator. The following instruction (ADD) is addressed, IR is sends the signal 
to ALU to add numbers which are in the registers (ACC and R). After the execution of the instruction 
of addition, the result should be sent to memory at the location 2, using the instruction  
STAC 2. This is the last instruction of the program written in the memory. Figure 6 gives the final 
view after the realization of the program. 
 



 356

2.5. SIM5 - Simulator TFaCo  
Simulator TFaCo is intended for advanced students, and represents an offered solution to one 
processor architecture, designed by the authors of this paper. All simulations offer a graphic interface 
for users and provide plenty of commentary and visual effects. In order to provide proper work, it is 
necessary to enter instructions (program) which the processor should execute and write in the memory. 
Two input methods are offered: input instruction by instruction (STEP TO STEP) or loading the 
program from the textual database (FILE). After the instructions have been written in the memory, 
they should be obtained and interpreted. The execution of the simulation can be described in several 
steps: calculating the instruction address, reading the instruction from the memory, decoding the 
instruction's operational code, executing the operation which is required by the operational code, 
determining the value of the indicator in the status register.  After the operation has been executed and 
the indicator has been written in the register RS, the procedure is repeated for the following instruction 
(reading, decoding, executing, and writing). The simulation proceeds according to the sequence of the 
instructions written in the memory. The layout of the window after the execution of the last instruction 
is given in the Figure 7. 

 
Figure 7. SIM 5 -  Simulator TFaCo 

 
3. CONCLUSION  
This paper describes computer architecture simulators which, using a16-bit processor, realize different 
arithmetic and logical operations and also load/execute different programs which are in the form of a 
sequence of commands in the internal memory (RAM). Developed simulators make it possible for the 
users to understand how the computer system functions because they start doing certain exercises with 
the simpler simulators and than move on to the more complex ones. In this manner, users acquire 
some fundamental knowledge which covers this very otherwise very complex area. 
 
4. REFERENCES 
[1] Stanković N.: Prilog simulaciji računarskih arhitektura, Magistarski rad, Tehnički fakultet, Čačak, 2009., 
[2] Đorđević, J.: Arhitektura računara, Edukacioni računarski sistem, Arhitektura i organizacija računarskog 

sistema, ETF, Beograd, 2003., 
[3] Maxvell, T., Scott, B.: Visual Basic Super Bible, Corte Madera, California, 1992., 


