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ABSTRACT 
Genetic programming (GP) is probably the most general approach from among evolutionary 
computation methods. The GP method is most often used for complex system modelling, but it can also 
be effectively used for the modelling of a relatively simple system, such as the systems described in our 
paper. In the paper a special genetic approach for the modelling of mechanical properties in formed 
material is proposed. Special material was formed by using different process parameters and then 
some mechanical properties of the specimens were determined. On the basis of a training data set, 
various different genetic models for mechanical properties with great accuracy were obtained during 
simulated evolution.  
Keywords: mechanical properties, genetic programming, modelling. 
 
 
1.  INTRODUCTION 
Evolutionary computation (EC) harnesses the power of natural selection to turn computers into 
optimization tools. This is very applicable to different problems in the manufacturing industry [1, 2]. 
One of most important EC methods is genetic programming (GP) which is, similarly to a genetic 
algorithm, an evolutionary computation method for imitating biological evolution of living organisms. 
Several  researches have  been carried out using a neural network or genetic algorithms for modelling, 
thus forming process parameters [3, 4, 5, 6], but only a few dealing with much more general genetic 
programming method [7, 8,9].  
This paper describes an evolutionary computation method approach for the modelling of yield 
strength. Experimental data obtained during the cold drawing processes under different conditions 
serves as an environment which, during simulated evolution, models for the yield strength have to be 
adapted to. Different values for effective strains and coefficients of friction were used as independent 
input variables (parameters), while yield strength was a dependent output variable. Then, GP was used 
for the evolutionary development of the models for yield strength   prediction, on the basis of a 
training data set.  
 
2. EXPERIMENTAL WORK 
The aim of the experimental work was to determine the influence of the effective strain εe and 
coefficient of friction μ during cold drawing on the change of yield strength of cold drawn alloy 
CuCrZr. Copper alloy rods were deformed by cold drawing under different conditions. Copper alloy 
rods were drawn from an initial diameter of D=20 mm to six different diameters (i.e. six different 
effective strains). Three different lubricants with different coefficients of friction (μ=0,07, μ=0,11 and 
μ=0,16)  were used for  the drawing process. In order to evaluate the yield strength, standard 
specimens for tensile tests were prepared from locations in the middles of the drawn rods. In this way 
we obtained 18 different experimental specimens. The yield strengths of all specimens were 
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determined by providing three tensile tests for each specimen in order to provide reliable results. The 
results (average values) for yield strength are presented in Table 1. Experimental data serve as an 
environment which, during simulated evolution, models for impact toughness have to adapt. 

 

                               Table 1.  Experimental results.  
 

Nr. 
Effective 

strain 
Coef. of 
friction 

Yield strength 
Rp0,2 [N/mm2 ] 

initial / / 409
1 0.10 0.07 498 
2 0.21 0.07 513 
3 0.32 0.07 523 
4 0.44 0.07 529 
5 0.57 0.07 532 
6 0.71 0.07 533 
7 0.10 0.11 500 
8 0.32 0.11 528 
9 0.71 0.11 537 

10 0.10 0.16 502 
11 0.44 0.16 536 
12 0.71 0.16 544 
13 0.21 0.11 515 
14 0.44 0.11 532 
15 0.57 0.11 535 
16 0.21 0.16 520 
17 0.32 0.16 529 
18 0.57 0.16 540 

 
 

 
3.  METHOD USED 
Genetic programming is probably the most general approach from among evolutionary computation 
methods in which the structures subject to adaptation are those hierarchically organized computer 
programs whose size and form dynamically change during simulated evolution. The initial population 
in GP is obtained by the creation of random computer programs consisting of available function genes 
from set F and available terminal genes from set T. The next step is the calculation of individual’s 
adaptation to the environment. Fitness is a guideline for modifying those structures undergoing 
adaptation. After finishing the first cycle, which includes creation of the initial population, calculation 
of fitness for each individual of the population, and genetic modification of the contents of the 
computer programs, an iterative repetition of fitness calculation and genetic modification follows. The 
evolution is terminated when the termination criterion is fulfilled. This can be a prescribed number of 
generations or sufficient quality of the solution. The evolutionary processes were controlled by the 
following evolutionary parameters: population size 1000, maximum number of generations to be run 
50, probability of reproduction 0.15, probability of crossover 0.7, maximum depth for initial random 
organisms 6, and maximum permissible depth of organisms after crossover 12. Each individual GP 
run started with the training phase by the training data set shown in Table 1 (Nr.1 to Nr.12). The 
testing data set (Table 1: Nr.13 to Nr. 18) was not included within the training range. Each run lasted 
up to generation 30 when it was temporarily interrupted. If an average percentage deviation Δ(i) of at 
least one prediction model (organism) in the population was smaller than 5%, the evolution of the 
population continued up to generation 50, otherwise it was terminated. More a 500 independent runs 
were executed for modelling the yield strength.  
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4. GENETIC MODELS – RESULTS AND DISCUSSION 
The best accuracy (Δ (i) = 0,175 %, and that of the testing data  Δ(i) = 0,18%)  of the GP model was 
obtained when the genes function set which includes the exponent function was used: F = (+,-,*, /, 
ZEXP): 
 
 (- (- (* (+ (* 8.218 μ) (+ -6.93491 7.17839)) (+ (% (ZEXP μ) μ) (- 2.8788 -9.30543))) (+ (% 
(ZEXP 5.93875) (* (+ 3.20968 2.16393) (ZEXP ε))) (% (* (- μ -4.38819) (* 8.218 ε)) (% (ZEXP 
(+ ε 7.35216)) (ZEXP (ZEXP ε)))))) (- (+ (+ (- (% (ZEXP (ZEXP ε)) ε) (% (* (+ 3.20968 
2.16393) (ZEXP ε)) (ZEXP ε))) μ) (% (* (+ ε 8.218) (% (* 8.218 μ) (* ε (% 6.56898 (ZEXP 
μ))))) (- (+ (* 8.218 μ) (+ -6.93491 7.17839)) (* ε -5.45287)))) (+ (ZEXP (- (- 2.8788 -9.30543) 
(% 6.56898 1.10215))) (% (* (+ (* 8.218 μ) (+ -6.93491 7.17839)) (+ (% (ZEXP μ) μ) (- 2.8788 
-9.30543))) (* (+ (* 8.218 μ) (+ -6.93491 7.17839)) (+ (% (ZEXP ε) μ) (- 2.8788 -9.30543))))))) 
 
The upper GP model can be written as a mathematical expression: 
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                            (4.1) 
 
The most accurate simple model with model depth 5, containing 7 function genes has average 
deviation  Δ (i) = 1,67 % (testing data  Δ(i) = 2,2%) is: 
 
    (+ (% -1.85689 ε) (* (- ε -9.72416) (- (+ μ ε) (* 5.39679 -8.66756)))) 

or  
   46.76 μ - 454.79 – 1.85/ε                       (4.2) 
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Figure 1.  Percentage deviation curve between the best models regarding individual  

generation and experimental results (F = +, -, *, /, ZEXP) 
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Figure 1 shows the percentage deviation curve (Δi) between the best model regarding individual 
generation and experimental results when using the set of function genes F = {+, -, *, /, ZEXP}. It is 
obvious that in early generations the best models are not as precise as the models generated in late 
generations.  
 
5.  CONCLUSIONS 
The genetic development of models took place on the basis of experimental data. The experimental 
data in this research were in fact the environment to which the population of models had to be adapted 
as much as possible. The models presented are a result of the self-organization and stochastic 
processes taking place during simulated evolution, and not of human intelligence. The accuracies of 
the models developed during the training phase were also confirmed using testing data not included 
within the training range. Only two genetically developed models out of many successful solutions are 
presented here. The accuracies of solutions obtained by GP depend on applied evolutionary 
parameters and also on the number of measurements and the accuracy of measurement. In general, 
more measurements supply more information to evolution which improves the structures of models.  
 
At the same time, the greater number of measurements causes time-consuming computer processing 
and the execution of experiments is very expensive and requires much time. Because of the high 
precision regarding the models developed by the GP approach, with the proposed concept, the 
excessive number of experiments/simulations can be avoided, which leads to the reduction of the 
product development costs. The research showed that simple, and in the same time, very precise 
models are often hard to reach. This is due to the fact that evolution is a stochastic process, therefore, 
rationality in the development of the models is rare. However, in many metal-forming processes the 
accuracy of prediction is of vital importance, not the model complexity. 
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