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ABSTRACT 
Abrasive wear is one of the prime and mostly costly causes of secondary failure in the design and 
operation of mechanical machines and equipment. Wear limits must be known and measured to assure 
quality and durability of products by an experimental process to determine an optimum material 
composition. The development of wear monitoring systems for industrial processes is well recognised 
in the industry due to the continued demand for improved product quality and productivity. In this 
paper, a novel method of wear rate identification, based on a Support Vector Machine (SVM) is 
proposed. SVM is used to relate the wear rate and technological parameters of the wear resistant drip 
moulding. The SVM model for determining the wear rate of white iron casting with a low chromium 
content, was trained and tested by using the existing exploitation data from the Bor Flotation Plant, 
Serbia. The simulated results of wear prediction show that the accuracy rate of the SVM is 97%.  
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1. INTRODUCTION 
The wear rate of flotation balls depends upon their material, mechanical-chemical characteristics 
obtained from the casting process and ore composition. The technology of developing flotation balls 
through hardness (HRC) and chemical composition has an influence on the balls' wear rate. In order to 
achieve the optimum process of ore milling, it is necessary to establish a relationship between the wear 
rate and the technological process parameters. For that purpose a Support Vector Machine (SVM) was 
used [1]. SVM is based on statistical learning theory and is a new achievement in the field of data-
driven modelling and has been successfully implemented in classification, regression and function 
estimation [2]. SVM has been widely used to solve various problems in almost all scientific disciplines 
[3,4]. SVM requires a database that consists of a finite number of data pairs. In this study, the input 
database consists of the technological properties of flotation balls and measured wear rate data in the 
milling process. A database obtained by experimental measurement of the flotation balls’ wear rate, 
served for algorithm training. A trained algorithm is used for estimating the wear rate of floatation 
balls with new chemical compositions and mechanical characteristics. For the prediction of the 
flotation balls' wear rate in the process of copper ore milling, the input data are the balls hardness 
(HRC) and chemical composition (percentage of C, Si, Mn, Cr), and the output data are the balls wear  
rate during the milling process.  
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2. LABORATORY TESTING PROCEDURE 
In order to develop an SVM model, measurements of the chemical composition of the flotation balls, 
as well as their wear rate during ore milling in an experimental mill were carried out. Every xperiment 
to measure the wear rate of the flotation balls in the laboratory mill was performed with ten balls each 
with a mass of 850 grams, cast from the same batch, and with the same chemical composition. 
Rockwell hardness testing of the floating balls was performed by the Rockwell "C” method using a 
5006-УХЛ 4.2, ТОЧПРИБОРРOСИА aperture. The experimental results gave an average value of 
hardness measured for all ten balls on a specially prepared surface. Chemical composition 
measurements were performed by spectrochemical analysis using a METAL-LAB 75/80 (GNR- 
ITALIA) device.  
The milling experiments were carried out to obtain the worn mass of balls per kilogram of milled ore. 
Milling experiments were carried out in the mill of optimum volumetric filling V=15.2 dm3 with φ60 
mm diameter balls (Figure 2). During the experiments, the mass of the new balls at charging was     
8.5 kg, and the initial mass of copper ore was 2.5 kg. Additional ore mass of 2.5 kg was added into the 
mill every 12 minutes. The experiment continued until a sampled ore mass of 500 kg is milled. Based 
on a repeated set of experiments carried out under the same conditions, 60 experimental results are 
obtained. The results indicate the abrasive wear rate expressed in grams of worn mass of balls per 
kilogram of milled ore (g/kg). Figure 2 shows the variation of the wear rate of flotation balls as a 
function of Rockwell "C" hardness.  
 

 
 

Figure 1. Experimental milling process and milling characteristic. 
 

 
Figure 2. Experimental results: wear rate vs. Rockwell Hardness 

 
 

3. MODEL IMPLEMENTATION 
SVM includes several different functions, such as: classification, regression, and clustering etc., which 
permits its application in managing different production processes [5]. In this study, the SVM 
regression function and appropriate learning SVR algorithm are used. The SVR algorithm consists of 
two phases: the training (off- line) phase, and the test (online) phase. Experimental results from Table 
1 are used for development of the SVM model. Data from a set of 43 experiments are used for training 
the SVR algorithms, while another 17 datasets are used for testing the SVR. As shown in Table 1, 
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there is an input vector whose attributes represent the input data of the SVR algorithm (HRC, Cr, Mn, 
C, Si), and wear rate of flotation balls (P) as an output value. 
 
3.1. Training phase 
The SVR algorithm belongs to the class of algorithms where a complete training database is given to 
algorithm at the beginning of training with the task of detecting the specific relationships of the 
database set [6]. By detecting this relationship, the learning system is trained for new input data. The 
SVR algorithm is used for training the parameters of the regression function. In the test phase, the 
trained regression function is used for the estimation of the flotation balls’ wear rate for a new input 
vector. In the training phase, the algorithm has input data (training dataset from Table 1), as well as 
appropriate output data that represents the measured values of the wear rate of the flotation balls. 
Based on these data, the SVR algorithm sets the parameters of the regression function, in order to 
model an appropriate set of data in the best possible way. Setting the parameters of the regression 
function actually represents learning about the way of solving the set problem. 
Regression function form is:  
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where: jβ
* - difference of optimum values of Lagrange multipliers, l - number of experimental results 

for training, *b - regression function threshold, k -selected kernel function [7]. 
 
3.2. Test phase 
After parameters optimisation, the regression function is used for estimating the wear rate of the 
flotation balls for a new input vector (Table 1). Figure 3 shows the comparison of flotation balls’ wear 
rate obtained for the algorithm test dataset, and measured values of wear rate for the same input data. 
The figure shows the small difference between the flotation balls’ wear rate obtained by the developed 
SVR algorithm and the measured data. Results show that the developed SVM model can be used for 
accurate prediction of the abrasive wear rate of floating balls. 
 

 
 

Figure 3. Comparison between measured and simulated flotation balls’ wear rate. 
 
The process of development and verification of the SVM model performance is simulated in the 
Matlab software package using functions svdatanorm, svr and svroutput [8]. In this analysis the mean 
error was Δ=0.0074, while mean absolute error was |Δ|=0.0125. Using the developed SVM model, 
wear rate of the flotation balls with hardness of between 55-59 HRC, for two different chemical 
compositions of melted metal was obtained (Figure 4). Results show that hardness level had a decisive 
impact on the wear rate of flotation balls: for lower values for hardness, wear rate decreases with the 
increase in the percentage of Mn in the alloy. 
 



622 

 
Figure 4. Wear rate of flotation balls vs. hardness (HRC). 

 
4. CONCLUSIONS 
An SVM model was constructed to relate the wear rate and technological parameters of the wear 
resistant drip moulding. The model was tested and used for the prediction of wear rates of floating 
balls in real operating conditions. The proposed SVM model is capable of accurately predicting the 
floating ball wear rate. In order to improve the precision of the SVM model predictions, it is necessary 
to improve the performance of the experimental mill, for determining the wear rate and to achieve 
higher wear rates with shorter experiment duration. Also, to build an efficient regression model for 
ball wear estimation, kernel selection methodologies should be explored to find an optimal kernel 
including the type of kernel and kernel parameters.  
 
5. ACKNOWLEDGEMENTS 
Authors are grateful to companies “Concern Farmakom MB- Industrial Combine GUCA– Serbia" 
and" Copper Mining and Smelting Combine Bor – Serbia" for their assistance in implementation of 
experimental measurements presented in the paper. The paper has resulted from studies on the 
projects of the Ministry of Science and Technological development of the Republic of Serbia I.50996 
and TR.35037.  
 
6.  REFERENCES 
[1] Gunn S.: Support Vector Machines for Classification and Regression, Technical Report, Dept. of 

Electronics and Computer Science, University of Southampton, U.K., 1998. 
[2] Shi D., Gindy N.N.: Tool wear predictive model based on least squares support vector machines, Mech 

Syst Signal Process., Vol. 21, No.4, p.1799-1814, 2007. 
[3] Huang S., Li X., Gan O.P.: Tool Wear Estimation using Support Vector Machines in Ball-nose End 

Milling, Proceedings of Annual Conference of the Prognostics and Health Management Society, Portland, 
2010, Publication Control Number: 016. 

[4] Cho S., Asfour S., Onar A.: Kaundinya N.: Tool breakage detection using support vector machine learning 
in a milling process, International Journal of Machine Tools & Manufacture, Vol. 45, No.3, p. 241 – 249, 
2005. 

[5] Yao Z., Mei D., Chen Z.: On-line chatter detection and identification based on wavelet and support vector 
machine, Journal of Materials Processing Technology, 210, No.5, p.713-719, 2010. 

[6] Taylor J.S., Cristianini N.: Kernel Methods for Pattern Analysis, Cambridge University Press, New York, 
USA, 2004. 

[7] Scholkopf B., Smola A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, 
and Beyond, MIT Press, Cambridge, MA, USA, 2006. 

[8] N. Cristianini, J. S. Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning 
Methods, Cambridge University Press, New York, 2000. 

 


