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ABSTRACT 

Computer simulation of fatigue crack growth in pipes subjected to variable amplitude loading is 

considered in this work. The fatigue crack, detected during the inspection, significantly reduces 
remaining fatigue life. The fatigue life is calculated by solving the equation of fatigue crack growth 

rate step-by-step from initial to final crack size by Runge-Kutta method. The computer program, 

based on this procedure, is used for the fatigue crack growth simulation. 

Keywords: variable amplitude loading, steel pipes, crack-like deffect, assessment of remainig fatigue 
life 

 

1. INTRODUCTION 
Fatigue is one of the most frequent form of the failures of the structural details, machine elements, 

pressure vessels and piping systems. According to ref. [1,2,3] 50 -90 percent of all mechanical failures 

are fatigue failures. This study focuses on the assessment of fatigue crack growth in pipes subjected to 
variable loading. The fracture mechanics approach was utilized, average material properties were 

assumed.  

 

2.  ANALYSIS OF CRACK PROPAGATION 

2.1. Crack propagation model 

The crack propagation lives were calculated with the Paris equation [4]: 

 

  mKC
dN

da
                                                                                                                           (1) 

 

where 
 

    da/dN = crack growth rate, 
         ΔK = range of stress intensity factor, 

C and m = material constants. 
 

2.2. Stress intensity factor 

The stress intensity factor was calculated by using Raju and Newman solution [5] for internal surface 
longitudinal cracks in pipes (Fig.1) Eq.(2): 
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where: 
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Figure 1. Pipe with longitudinal internal surface crack 

 

 


























































3

3

2

2

10
22

0

2

0
4322 G

R

a
G

R

a
G

R

a
G

RR

R

R

t
F
i

                                         (4) 

 

where a = depth of surface crack, 2c = surface crack length, t = cylinder wall thickness, the shape 
factor for an elliptical crack, Q is the square of the complete elliptic integral of the second kind and is 

approximated by Eq.(3), p = internal pressure in cylinder, R , R0 = inner and outer radii of cylinder. 

Influence coefficient for jth stress distribution on crack surface, Gj , was obtained from the appropriate 
finite element solution and given in tables [5] for the particular velues of t/R , a/c , a/t, . Gj values for 

another a/t values was determined in this work by using regresion analysis: 
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3. PREDICTION OF THE REMAINING FATIGUE LIFE 

Average material properties, for steel, were assumed: m = 3, C = 4.910
-12

 , with ΔK in units of 

MPa m  and da/dN in units of m/cycle, threshold stress intensity factor ΔKth = 4 MPa√m, the fracture 

toughness Kc=55 MPa m . Geometrical parameters are: t/R = 0.25, t =10 mm, R = 40 mm, R0 =50 

mm, a/c =0.4, initial crack size ain=0.4 mm. The pipes are subjected to variable internal pressure 
(Table 1 and 2). The remaing fatigue life (crack propagation life) Np is obtained by solving Eq.(1) 

using the Runge-Kutta [6] method. Obtained results are shown by Δp vs N diagram in Fig.2 and 

compared with Miner's and Haibach's results. 
 

   Table 1. Heavy spectrum of internal pressure ranges 

Block number. i 1 2 3 4 5 6 7 8 9 10 

 Frequency  i 0,003 0,007 0,008 0,014 0,024 0.044 0.078 0.138 0.248 0.436 

Normalized 

pressure range 
pi /p1

 

1 0,944 0,927 0,906 0,850 0.800 0.770 0.735 0.680 0.630 

 



 

111 

   Table 2. Medium spectrum of internal pressure ranges 

Block number. i 1 2 3 4 5 6 7 8 9 10 
 Frequency  i 0,003 0,007 0,008 0,014 0,024 0.044 0.078 0.138 0.248 0.436 

Normalized pressure 

range pi /p1 
1 0,890 0,852 0,814 0,767 0.690 0.600 0.510 0.420 0.340 
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Figure 2. Comparison of predicted fatigue lives with Miner's and Haibach's results for heavy 
spectrum 

                

  Table 3. Predicted fatigue lives for variable-amplitude fatigue Np,  cycles  

 Heavy spectrum Medium spectrum 

Equivalent 
pressure 

range ΔpRMC, 
MPa 

Miner rule 
 or  

Haibach’s 
rule  

Computer 

simulation 

Difference, 

% 

Miner rule 
 or  

Haibach’s 
rule  

Computer 

simulation 

Difference, 

% 

70.0 76467 70003 +9.2 77876 60003 +29.8 

60.0 121507 115003 +5.7 123732 103003 +20.1 

45.0 288372 279003 +3.4 293321 267003 +9.9 

35.0 613559 618003 -0.7 633397 600003 +5.6 

26.0 1637898 1600003 +2.4 1722933 1668003 +3.3 

22.0 3381058 3850316 -13.9 3654867 3104003 +17.7 

20.0 5818038 8930003 -53.5 5465287 4513003 +21.1 

18.5 7793835 23945003 -3.07 times         7099957 6290003 +12.9 

16.0    11296608 12239100 -8.3 
14.0    21010953 30700003 -46.1 

 

The folowing formula were used: Miner's [7], if all pressure ranges are above fatigue limit   
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and Haibach's [8], which acounts for the damaging effects of pressure ranges below the constant 

amplitude (CA) fatigue limit   
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where equivalent pressure range is 
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The similar procedure was performed for medium spectrum: 
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4. CONCLUSIONS 

When all pressure ranges are above CA fatigue limit results of computerized simulation are identical 
to those obtained by Miner rule (difference is less than 1%) as derived analiticaly by Maddox [9]. 

This is valid only if interval ai to af is the same for VA and CA load. If the final crack size is 

determined by Kc
 
 than Miner's results becam noncoservative: 9% for heavy spectrum and 30% for 

medium spectrum. When some of the pressure ranges are below CA fatigue limit Haibach's results are 

conservative for heavy spectrum and nonconservative for medium spectrum. 
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