INFLUENCE OF HEAT TREATMENT ON THE PROPERTIES OF STEEL 17-7PH WITH MODIFIED CHEMICAL COMPOSITION

Belma Fakić Milenko Rimac Adisa Burić Metallurgical Institute "Kemal Kapetanović" Zenica Travnička cesta 7, Zenica Bosnia and Herzegovina Diana Ćubela Faculty for metallurgy and materials Travnička cesta 1, Zenica Bosnia and Herzegovina Mihyar Noureldin Mahmoud Material Research Centre Khartoum Sudan

ABSTRACT

Possibilities of the application of new materials in the automotive industry place challenges in front of researchers of our times. Modification of the chemical composition and different variants of heat treatment allows achieving improved mechanical properties. Steel 17-7PH is austenitic - martensitic steel with high strength (750-1500 MPa) and hardness (34-49HRC), which is achieved by controlled phase transformation and complex heat treatment of precipitation strengthening. In this paper, through the results of tensile properties of steel 17-7PH for condition TH1050 and modified condition RH 950 obtained at room temperature, the influence of heat treatment will be presented. **Keywords:** PH steels, 17-7PH steel, precipitation hardening, mechanical properties, microstructure

1. INTRODUCTION

Stainless steel are defined as iron based alloys containing at least 10,5% chromium and a maximum of 1,2% carbon. Stainless steels may contain nickel as another major alloying element, with a content of up to 38%, plus other alloying elements and stabilisers. The chromium content renders stainless steels corrosion resistant [1,2,3].

Steel 17-7PH is classified as high-strength austenite – martensitic stainless steel. The high strength, hardness, resistance to fatigue and corrosion resistance are achieved by precipitation hardening.

Research of different combinations of the chemical composition of materials and the temperature variation of heat treatments offer the possibility of modelling high-performance materials with lower cost of production and a wider field of application. In this paper, through the results of tensile properties of steel 17-7PH for condition TH1050 and modified condition RH 950 obtained at room temperature, will be presented to the influence of heat treatment.

2. SEMIAUSTENITIC STAINLESS STEEL 17-7PH

Semi-austenitc stainless steel 17-7PH, contains both a martensitic and austenitic microstructure as its chromium-nickel ratio prevents the formation of the fully austenitic phase. This 17-7PH stainless steel was developed to have corrosion resistance as well as significant mechanical strength but principally better stress corrosion resistance.

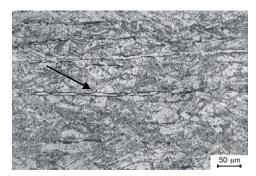


Figure 1. represents the microstructure of semiaustenitic stainless steel, etched in Villela reagent [4] which is:

- solution annealed at 1065 °C,

- 955 °C hold 10 minutes, air cold,

- -75 °C hold 8 hours, air heat to room temperature,

- 510 °C hold 60 minutes, air cold.

Arrow shows stringer of delta ferrite in martensitic matrix [4].

Figure 1. Microstructure of 17-7 PH steel

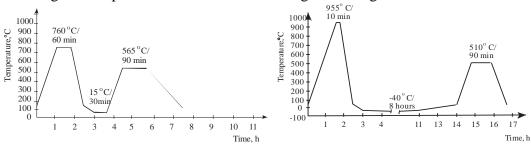
2.1 Chemical composition

Standardized chemical composition of semi-austenitic stainless steel 17-7PH is given in table 1, which is balanced so that austenite has a low thermodynamic stability.

Table 1: Chemical composition of stainless steel 17-7 PH [2].

	Chemical composition, %							
	C, max	Si, max	Mn, max	P, max	S, max	Cr	Ni	Al
BAS EN 10088-5	0,09	0,7	1,0	0,040	0,015	16-18	6,5-7,8	0,7-1,5
Specific interval of content of Cr, Ni and Al in planned experiment					14-15	7,5-8,5	0,75-1,25	

Modification of chemical composition is reflected in the changing of chromium, nickel and aluminium content in comparison with standardized composition given in table 1. In produced batches was achieved content of chromium is in range 13,8 to 15,7%Cr, nickel is 7,3 to 9,1%Ni and aluminium from 0,61 to 1,53%.


2.2 Heat treatment

Heat treatment of stainless steel PH is performed in order to achieve different levels of mechanical properties. The first step is solution annealing, during which dissolve the second phase, present in the matrix, in order to obtain a solid solution of γ . Rapid cooling from the annealing temperature suppresses the soluble phase transformation in a high-temperature phase in a phase stable at low temperature, ie. a homogeneous supersaturated solid solution at room temperature [5]. Samples rolled bars ϕ 15mm, heat treated according to procedure given in table 2.

 Table 2: Heat treatment procedures

Heat treatment	Austenite conditioning	Transformation from austenite to martensite	Precipitation hardening- aging	
TH 1050	760°C/ 60 min/air	Within one hour of cooling to 15±3°C and holding at least 30 minutes	565°C/90 min/air	
Modified955°C/RH 95010 min/air		Within one hour of cooling to -40°C in dry ice / 8hours/air to room temp	510°C/90 min/air	

The diagrams of performed heat treatment are given on figure 2.

a) TH1050 condition

b) Modified RH950 condition

Figure 2. Heat treatment

Values of mechanical properties of stainless steel 17-7PH, for bars and properties for modified chemical composition are given in table 2.

Batch	Cr [wt,%]	Ni [wt,%]	Al [wt,%]	Condition	Rm [N/mm ²]	$R_{p0,2} [N/mm^2]$	HRC/HV10
				TH 1050	1170	965	25-38
Metals Handbook			RH 950	1275	1030	41	
V1781 14,3	7,4	0,96	TH1050	1378	1287	372	
			RH 950	1526	1473	492	
V1782 14,4	7,5	1,00	TH1050	1390	1298	382	
			RH 950	1547	1527	521	
V1770	V1770 15 7	7.5	0.61	TH1050	1170	1139	340
V1772 15,7	7,5	0,61	RH 950	1371	1352	464	
W1772	V1772 157	7.6	0.7	TH1050	1205	1095	321
V1773 15,7	7,6	0,7	RH 950	1426	1377	485	
V1740	V1749 14,4	9,1	0,87	TH1050	1304	1292	373
V1/49				RH 950	1358	1298	459
N1754 14.0	0.2	0.9	TH1050	1288	1271	448	
V1/54	V1754 14,2	8,3	0,8	RH 950	1430	1389	466
V1774	V1774 14 C	7.0	1.50	TH1050	1411	1345	437
V1774 14,6	7,8	1,53	RH 950	1636	1555	535	
W1775	V1775 14,6	7,3	1.07	TH1050	1123	926	445
V1//3			1,27	RH 950	1475	1375	512
W1747	147	8,7	0,79	TH1050	1093	927	369
V1/4/	V1747 14,7			RH 950	1306	1270	446
W1755	N1755 15 1	0.2	0.0	TH1050	1291	1224	427
V1755 15,1	8,2	0,8	RH 950	1408	1395	453	
V1760	V1760 15.5	7.6	1,22	TH1050	1275	1185	389
V1760 15,5	7,6	1,22	RH 950	1526	1487	536	
V1783 15,6	7,4	1,18	TH1050	1419	1276	370	
			RH 950	1562	1495	541	
V1752 14,1	8,9	1,11	TH1050	1414	1261	365	
			RH 950	1462	1292	457	
V1753 13,8	8,3	1,19	TH1050	1322	1222	411	
			RH 950	1517	1469	495	
V1750 14,6	9,1	1,23 -	TH1050	1157	984	384	
			RH 950	1554	1463	528	
V1756	15.2	0.2	1.2	TH1050	1176	961	330
V1756 15,2	8,3	1,3	RH 950	1556	1520	514	

Table 3: Mechanical properties of stainless steel 17-7 PH [1] and stell with modified chemical composition.

3. ANALYSIS OF RESULTS

Based on the results of tests of mechanical properties at room temperature, it is evident that the heat treatment affects the value of Rm, $Rp_{0,2}$ and HV10 at steel of the same chemical composition. Modified RH950 cryogenic heat treatment [6], cooling to -40°C and subsequent aging of the resulting values are much higher mechanical properties compared to the heat treatment TH1050, where the samples are cooled to 15°C and aging.

The regression analysis of influence independent variables content of Cr, Ni and Al on depend variables Rm, $Rp_{0,2}$ and hardness at room temperature for condition TH 1050 and RH950, applying software package MINITAB, was performed. Regression analysis showed different effects of elements Cr, Ni and Al on Rm, $Rp_{0,2}$ and HV10. In the heat treatment TH1050 any element having a dominant statistically significance on the value of Rm, $Rp_{0,2}$ and HV10, but when acting together, the observed range, their combined influence is statistically significant and reliable (Fisher value) which shows the resulting regression model and diagrams given in Figure 3. For the modified heat treatment RH950 significant influence of Cr, Ni and their interaction is statistically significant on the dependent variables. Obtained regression models are given in table 3.

Number in Condition TH1050Modified condition RH950 $Rm = 56, 7 \cdot Cr + 422, 4 \cdot Ni - 14355, 9 \cdot Al - 25, 8 \cdot CrNi +$ $Rm = 287, 7 \cdot Cr + 483, 7 \cdot Ni + 1120, 8 \cdot Al - 58, 5 \cdot CrNi 1070, 2 \cdot CrAl + 1745, 3 \cdot NiAl - 129, 5 \cdot CrNiAl$ $-227, 5 \cdot CrAl - 397, 2 \cdot NiAl + 48, 2 \cdot CrNiAl$ $Rp_{0,2} = 156, 7 \cdot Cr + 758, 6 \cdot Ni - 24658 \cdot Al - 60, 4 \cdot CrNi +$ $Rp_{0,2} = 292, 6 \cdot Cr + 535, 8 \cdot Ni + 7882, 9 \cdot Al - 62, 5 \cdot CrNi 1660, 0 \cdot CrAl + 2723, 0 \cdot NiAl - 183, 9 \cdot CrNiAl$ $691, 2 \cdot CrAl - 1338, 1 \cdot NiAl + 112, 0 \cdot CrNiAl$ $HV10 = -54, 5 \cdot Cr + 10, 1 \cdot Ni - 2060, 6 \cdot Al + 9, 1 \cdot CrNi HV10 = -77, 1 \cdot Cr + 143, 4 \cdot Ni - 199, 2 \cdot Al - 16, 0 \cdot CrNi 56, 2 \cdot CrAl - 168, 7 \cdot NiAl + 1, 3 \cdot CrNiAl$ $17, 5 \cdot CrAl - 71, 3 \cdot NiAl + 9, 5 \cdot CrNiAl$

Table 4. Obtained regresion models

Based on the obtained models can be predicted the value of Rm, $Rp_{0,2}$ and HV10 for the observed interval value of their content. The values obtained experimentally and the value of the regression model are given in diagrams on figure 3.

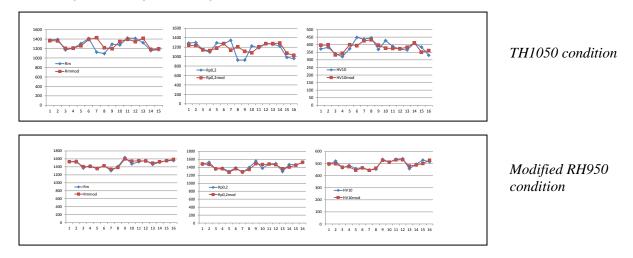


Figure 3. Matching diagrams of measured and predicted values

4. CONCLUSION

Heat treatment at cryogenic temperatures of stainless steel 17-7PH modified chemical composition, is given greater values of Rm, $Rp_{0,2}$ and HV10. Modified heat treatment RH950, with cooling to -40°C instead of the -75°C, achieved value of Rm, $Rp_{0,2}$ and HV10 like in standardized heat treatment and standardized chemical composition, but in standardized heat treatment TH1050, there have been some results with smaller value than is prescribed for standardized chemical composition. Regression analysis showed, at heat treatment TH1050, that no element alone or their dual combination do not significantly affect the mechanical properties, but when acting together, the observed range, their combined influence is statistically significant and reliable.

5. REFERENCES

- [1] Metals handbook: Properties and Selection: Iron, Steels and High-Performance, 10th Edition, 1985.
- [2] BAS EN 10088-3:2007 Stainless steels. Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes
- [3] Fakić B., Ćubela D.: Review of the development of research in the design of semi austenitic stainless steel 17-7PH, 17th International Research/Expert Conference T MT 2013, Istanbul, Turkey, 10-11 September 2013
- [4] George E.Toten: Steel heat treatment, Metallurgy and Technologies, 2006
- [5] Herman Š.: Metalografija, Univerzitet u Beogradu, Zavod za izdavanje udžbenika SR Srbije, Beograd, 1962.
- [6] Fakić B., Ćubela D.: Modification of chemical composition and thermal treatment of semiaustenitic stainless steel 17-7PH, X Naučno/stručni simpozij sa međunarodnim učešćem, MNM Bugojno, B&H, 21-22. April 2014.