
209

21
st
 International Research/Expert Conference

”Trends in the Development of Machinery and Associated Technology”

TMT 2018, Karlovy Vary, Czech Republic, 18
th

 – 22
nd

 September, 2018

MAPPING BETWEEN RELATIONAL DATABASE MANAGEMENT

SYSTEMS AND GRAPH DATABASE FOR PUBLIC

TRANSPORTATION NETWORK

Faruk Serin

Munzur University, Department of Computer Engineering,

62000, Tunceli, Turkey

Suleyman Mete, Muhammet Gul, Erkan Celik

Munzur University, Department of Industrial Engineering,

62000 Tunceli, Turkey

ABSTRACT

Analysis, model, optimization and simulation (AMOS) of public transportation network (PTN) is

critical for urban transportation services (UTS). When PTN is analyzed, it is seen stations and routes

are prominent factors since they have important role in almost all stage of UTS. The graph theoretical

approaches have been commonly used to model PTN. In the basic graph G(V, E, R) of PTN, the

station declared as vertex (V) and directed edges (E) are generated between stations. The routes (R)

of the graph include the set of edges. However, PTN data is generally stored and managed in

relational database management systems (RDBMS). Thus, the graph theoretical AMOS of PTN in

RDBMS requires extra effort such as converting relationships to edges. Thanks to advancement in

technology, graph databases management system (GDBMS) such as Neo4j make AMOS of PTN easy

and efficient. Thus, the usage of graph compute engines has been increasing in order to manage PTN

dynamically. In this circumstance, the requirement of mapping between RDBMS and GDBMS arises.

This study addresses the mapping between PostgreSQL RDBMS and Neo4j GDBMS.

Keywords: Public transportation, graph theory, graph database, PostgreSQL, Neo4j

1. INTRODUCTION

Transportation is one of the most significant issue for aspect of city planners. It has a direct impact on

the all aspect of the community such as education, economy, health and entertainment activities, and

these cannot be maintained without an effective city infrastructure of transportation. For this reason,

using of public transportation is gaining more and more importance day by day with growing

population [1]. There are a lot of disadvantage during use private car such as noise and air pollution,

stress and traffic problems, excessive and unreliable travel times. Therefore, people are generally

tending use public transportation due to disadvantage of special car. In this case, passengers need to

plan their trip in order to save money and time. One of urban transportation services providers’ tools

is database management systems (DBMS) to meet these numerous and dynamic needs of passengers.

DBMS affects the performance of the other tools. The databases play an important role to unified

information from sources like maps, vehicles, stops timetables, etc. By this way, information can be

storing into data warehouse or available to end users for analyzing frequently used routes, bottlenecks

and discovering. This information is generally used by an ordinary user on a mobile device

application [2]. Thus, the choose of DBMS is important.

The prominent factors of public transportation network (PTN) is stations and routes since they have

important role in almost all stage of urban transportation services (UTS). The graph theoretical

approaches have been commonly used to model PTN. In the basic graph G(V, E, R) of PTN, the

station declared as vertex (V) and directed edges (E) are generated between stations. The routes (R) of

the graph include the set of edges. However, extra efforts such as converting relationships to edges is

required to apply these algorithms if RDBMS is used to manage PTN data. Thanks to advancement in

210

technology, graph databases management system (GDBMS) such as Neo4j facilitates analysis, model,

optimization and simulation (AMOS) of PTN.

This study addresses the mapping between PostgreSQL RDBMS and Neo4j GDBMS. The paper

presents the graph database structure to store and process data and its implementation for efficient trip

planning in PTN. One of the most important elements of modern intelligent transportation systems

constitute the advanced databases. The rest of the paper is given as follows: material and method are

detailed in Section 2. Conclusion is provided in Section 3.

2. MATERIAL AND METHOD

Nowadays, storing, retrieving, transmitting, and manipulating data is very important in almost every

area. For this, database management systems such as RDBMS and GDBMS are used. Each database

management system has advantages and disadvantages depending on the purpose of usage. The

purpose of this work is to address the databases facilitating the management and processing of data

required for public transportation. Since the appropriate databases for this purpose are RDBMS and

GDBMS, PostgreSQL [3] and Neo4j [4] are considered for RDBMS and GDBMS respectively.

RDBMS is a widely used database management system. Data is stored as tables with rows and

columns in RDBMS and processed using structured query language (SQL). The main processes of

RDBMS are queries of create, select (read), update and delete (CRUD). Data is stored as graph

structures in GDBMS and provide more efficiency for graph algorithms. In this study, Neo4j is

selected as GDBMS. Neo4j as a graph platform uses Cypher [5], Neo4j’s query language, to process

data.

2.1 Mapping Between RDBMS and GDBMS

In RDBMS, first, the tables are created, then each row (object) is inserted. In GDBMS, each object of

nodes or edges is created as stated in section 2.2. The mapping between RDBMS and GDBMS can be

performed by using equivalent CRUD operations. The export statement (COPY … TO …) in

PostgreSQL and import statement (LOAD CSV …) in Neo4j can also be used in order to transfer

existing data from PostgreSQL to Neo4j.

Figure 1. The basic ER diagram of RDBMS for PTN Figure 2. The example Neo4j graph of PTN

The basic ER diagram of PostgreSQL for PTN database is illustrated in Figure 1. An example Neo4j

graph of PTN is shown in Figure 2. The CRUD for RDBMS and its equivalents for Neo4j are given as

follows. SQL statement CREATE TABLE is used once for each entity. SQL statement INSERT

INTO and its equivalents Cypher statement CREATE is run for each object, but, only an example is

given here. SQL statement-X is equivalent to Cypher statement-X.

SQL statement-1:

CREATE TABLE public.stations (id bigint, name character varying(50), CONSTRAINT

stations_pkey PRIMARY KEY (id));

211

INSERT INTO public.stations(id, name) VALUES (1, 'Station 1');

INSERT INTO public.stations(id, name) VALUES (2, 'Station 2');

Cypher statement-1:

CREATE (:Stations {id: 1, name: 'Station 1'});

CREATE (:Stations {id: 2, name: 'Station 2'});

SQL statement-2:
CREATE TABLE public.routes(id bigint,name character varying, CONSTRAINT routes_pkey

PRIMARY KEY (id));

INSERT INTO public.routes (id, name) VALUES (1, 'Route 1');

Cypher statement-2:

CREATE (:Routes {id: 1, name: 'Route 1'});

SQL statement-3:
CREATE TABLE public.vehicles(id bigint,name character varying(50),CONSTRAINT

vehicles_pkey PRIMARY KEY (id));

INSERT INTO public.vehicles(id, name) VALUES (1, 'Vehicle 1');

Cypher statement-3:

CREATE (:Vehicles {id: 1, name: 'Vehicle 1'});

SQL statement-4:
CREATE TABLE public.distance_arcs (id bigint,station_id bigint,route_id bigint,distance_meter

double precision,CONSTRAINT distance_arcs_pkey PRIMARY KEY (id),CONSTRAINT

route_id_fk FOREIGN KEY (route_id)REFERENCES public.routes (id) MATCH SIMPLE,

CONSTRAINT station_id_fk FOREIGN KEY (station_id) REFERENCES public.stations (id)

MATCH SIMPLE);

INSERT INTO public.distance_arcs(id,station_id,route_id,distance_meter) VALUES (1,1,1,200);

Cypher statement-4:

CREATE (:Distance_arcs {id: 1,name:'S_1-R_1', station_id: 1,route_id: 1});

MATCH (s:Stations),(d:Distance_arcs) WHERE s.id=d.station_id and d.id=1 CREATE (s)-

[:Distance_edge{distance_meter:200}]->(d);

SQL statement-5:

 CREATE TABLE public.time_arcs(id bigint,distance_arcs_id bigint,vehicle_id bigint,hour time

without time zone,date date, CONSTRAINT time_arcs_pkey PRIMARY KEY (id), CONSTRAINT

distance_arc_id_fk FOREIGN KEY (distance_arcs_id) REFERENCES public.distance_arcs (id)

MATCH SIMPLE, CONSTRAINT vehicle_id_fk FOREIGN KEY (vehicle_id) REFERENCES

public.vehicles (id) MATCH SIMPLE);

 INSERT INTO public.time_arcs(id, distance_arcs_id, vehicle_id, hour, date) VALUES

(1,1,1,'10:00','10/03/2018');

Cypher statement-5:

CREATE (:Time_arcs{id:1, name:'D_1-V_1', distance_arcs_id:1, vehicle_id:1});

MATCH (d:Distance_arcs),(t:Time_arcs) WHERE d.id=t.distance_arcs_id and t.id=1 CREATE

(d)-[:Time_edge{hour:'10:00', date:'10/03/2018'}]->(t);

SQL statement-6:
 CREATE TABLE public.fee_arcs(id bigint,time_arcs_id bigint, station_id bigint, fee double

precision,CONSTRAINT fee_arcs_pkey PRIMARY KEY (id),CONSTRAINT station_id_fk

FOREIGN KEY (station_id) REFERENCES public.stations (id) MATCH SIMPLE,CONSTRAINT

vehicle_arcs_id_fk FOREIGN KEY (time_arcs_id)REFERENCES public.time_arcs (id) MATCH

SIMPLE);

INSERT INTO public.fee_arcs(id, time_arcs_id, station_id, fee) VALUES (1,1,2,3);

Cypher statement-6:

CREATE (:Fee_arcs{id:1, name:'T_1-S_2',time_arcs_id:1, station_id:2});

MATCH (t:Time_arcs),(f:Fee_arcs),(s:Stations) WHERE t.id=f.time_arcs_id and f.station_id=s.id

and f.id=1 CREATE (t)-[:Fee_edge{fee:3}]->(s);

SQL statement-7: SELECT * FROM public.stations where id='1';

Cypher statement-7: MATCH (s:Stations) where s.id=1 return s

SQL statement-8: UPDATE public.stations SET name='Station 111' WHERE id=1;

Cypher statement-8: MATCH (n:Stations { id: 1 }) SET n.name = 'Station 111' RETURN n.name;

212

SQL statement-9: DELETE FROM public.stations WHERE id=2;

Cypher statement-9: MATCH (n:Stations{id:2}) DELETE (n);

PostgreSQL and Neo4j store data in different formats as explained in the previous sections. When the

Cypher statements 1-9 given in Section 2 are run, a graph as in Figure 3 are generated and the data is

stored as graph structure. The path from Station 5 to Station 7 is calculated using Cypher statement-

10, and the result of query is shown in Figure 4.

Cypher statement-10: MATCH (from_s:Stations { name: 'Station 5' }),(to_s:Stations { name:

'Station 7' }), p = shortestPath((from_s)-[*]->(to_s)) RETURN p

Figure 3. A simple graph of PTN in Neo4j Figure 4. A path from Station 5 to Station 7 in Neo4j.

3. CONCLUSION

Public transport networks data is commonly stored in RDBMS, although the networks have graph

structure. In this case, it is necessary to transform the relational structures into graph structures in

order to apply graph methods efficiently. However, this brings extra workload, especially in a

dynamic system. The data can be stored in GDBMS to get rid of this transformation and the

performance is improved by directly running the graph algorithms. In this study, it is explained how

basic information for public transportation can be managed in Neo4j GDBMS and how data in

PostgreSQL RDBMS can be transferred to Neo4j.

4. REFERENCES

[1] Rakocevic, S., Dragasevic, Z., & Montenegro, P. (2011). Parametric programming for the

transportation problem. In The 15th International Research/Expert Conference “Trends in the

Development of Machinery and Associated Technology” TMT 2011 (pp. 925-928).

[2] Czerepicki, A. (2016). Application of graph databases for transport purposes. Bulletin of the

Polish Academy of Sciences Technical Sciences, 64(3), 457-466.

[3] https://www.postgresql.org/files/documentation/pdf/10/postgresql-10-A4.pdf (May 2018)

[4] https://neo4j.com/docs/ (May 2018)

[5] https://neo4j.com/developer/cypher-query-language/ (May 2018)

