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ABSTRACT 
Roughness obtained in honing process depends on many different process parameters, such as grain 
size of abrasive stones, pressure of stones on the workpiece’s surface, density of abrasive, tangential 
speed of the honing head and linear speed of the honing head. This fact makes it difficult to study the 
process from an analytical point of view. For this reason, use of empirical methods or use of artificial 
intelligence is recommended in this case. In the present paper, results about use of neural networks for 
obtaining average roughness Ra as a function of honing parameters are presented. Best neural 
network was chosen among different possibilities. For doing this, experimental results were divided 
into three groups: 70 % of results were used for training, 15 % of results were used for validation and 
15 % of results were used as test to compare networks with other models. The best neural network was 
considered to be the one with lowest errors using the validation experimental results. 
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1. INTRODUCTION 
Manufacturing processes have been widely modelled by means of neural networks. For example, 
surface roughness in grinding processes was studied by Liao and Chen. [1]. However, few studies are 
known on use of neural networks in interior honing processes. Feng et al. obtained models for surface 
roughness parameters that are related to the Abbott-Firestone curve for both rough and finish 
processes [2]. Variables considered were grit size, honing time and pressure. Pu et al. used neural 
networks to optimize the honing process [3]. They varied parameters such as oilstone granularity, 
stroke length, stroke speed and spindle speed. In the present paper interior honing process for 
cylinders was modelled by means of artificial neural networks in order to obtain average roughness Ra 
from 5 relevant variables in the process: grain size of abrasive (Gs), abrasive density (D), linear speed 
of abrasive stones with respect to workpiece (VL), tangential speed of abrasive stones with respect to 
workpiece (VT), and pressure of abrasive stones on workpiece (P). 
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2. EXPERIMENTAL TESTS 
Honing experiments were conducted in a honing test machine, to 33 steel St-52 cylinders of 
dimensions 300 mm in length, 90 mm external diameter and 80 mm internal diameter. For each 
cylinder 9 roughness measurements were taken equidistant one from the other along a circumference 
in a diametral plane at 150 mm from the end of the cylinder. A Taylor-Hobson Talysurf 2 roughness 
meter was employed. In Table 1 honing conditions as well as roughness Ra results are presented. 
  

Cylinder GS 
(FEPA) 

D  
(FEPA) 

VL 
(m/min) 

VT 
(r.p.m.) 

P 
(N/cm2) 

Ra 
(μm) 

1 76 30 20 80 450 1.25 
2 181 30 20 80 450 2.83 
3 76 75 20 80 450 1.09 
4 181 30 32 80 450 2.93 
5 76 75 32 80 450 0.88 
6 181 75 32 80 450 1.40 
7 181 30 20 180 450 2.57 
8 76 75 20 180 450 0.86 
9 181 30 32 180 450 3.10 

10 76 75 32 180 450 1.11 
11 181 75 32 180 450 1.70 
12 76 30 20 80 600 1.48 
13 181 30 20 80 600 2.89 
14 76 75 20 80 600 1.14 
15 181 75 20 80 600 2.53 
16 76 30 32 80 600 1.20 
17 181 30 32 80 600 3.06 
18 181 75 32 80 600 2.10 
19 76 30 20 180 600 1.40 
20 181 30 20 180 600 3.11 
21 76 75 20 180 600 1.04 
22 76 30 32 180 600 1.61 
23 181 30 32 180 600 3.21 
24 76 75 32 180 600 1.24 
25 181 75 32 180 600 1.93 
26 76 50 26 130 525 1.12 
27 126 50 20 130 525 2.12 
28 126 50 26 80 525 2.12 
29 126 50 26 180 525 2.10 
30 126 50 26 130 600 2.13 
31 126 50 26 130 525 1.74 
32 126 50 26 130 525 1.86 
33 126 50 26 130 525 2.10 

 

 
3. DATA TREATMENT 
A total amount of 33 x 9 data were collected. However, from each cylinder extreme values were 
statistically discarded. Final amount of 207 data groups (Gs, D, VL, VT, P, Ra) were considered. Data 
groups were randomly divided into training, validation and test groups in a proportion 70% (145 
groups), 15% (31 groups), and 15% (31 groups) respectively. In order to generalize results this random 
division process was repeated three times, in a way that initial 207 data groups were randomly divided 
into three different data divisions (called divisions a, b and c) each one containing training, validation 
and test data. If training data are used for training each network in an iterative way by modifying the 
weight matrix, validation data are used to stop training when reduction in quadratic average error is 
lower than a certain previously defined gradient (1.00 e-10). Test data are not used in the training 
process and are kept in order to evaluate and compare neural network performance with other models 
performance. 
 

Table 1.Process variables and Ra values (average value of replicates) 
obtained when machining 33 cylinders in the test honing machine 
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4. NEURAL NETWORK CONFIGURATION 
Different configurations for a multilayer perceptron neural network were tested, with a Back 
Propagation supervised training algorithm and Cross Validation system. The neural network model 
was chosen according to literature about neural networks in abrasive machining processes [1,4,5,6,7]. 
The study was conducted with two different perceptron configurations, first on with one hidden layer 
(Figure 1), and second one with two hidden layers. Second one is similar to first one but with a hidden 
layer in the middle. A higher number of layers were discarded in order to avoid overtraining, which 
would mean memorizing of training data rather than training. 
 

 
 
 
 
 

5. METHODOLOGY FOR SELECTING THE MULTILAYER PERCEPTRON 
For each data division ‘a’, ‘b’, and ‘c’ the perceptron configuration that better models training and 
validation data is searched, for both networks with one and two hidden layers. Mean quadratic error 
(mqe) of the validation group is used as selection parameter. Since mqe results of the three data 
divisions do not coincide completely, a final configuration or number of neurones N considered being 
best is calculated. Best configuration is obtained by weighting number of neurones of each division 
according to mqe for each division. For a network with two hidden layers the same process for 
determining number of neurones will be applied separately to each one of the two hidden layers. So as 
to compare and decide the best configuration between one hidden layer and two hidden layers, a new 
division ‘d’ of training, validation and test data is performed. With such data division, mqe is 
calculated for the two previously selected networks, after training them with the new data division ‘d’. 
 
6. RESULTS 
6.1. Perceptron configuration with one hidden layer 
From training and calculation of mqe of neural networks with one hidden layer (Table 2), best 
configuration is N = 39.6 corresponding to a perceptron with 40 neurones in the hidden layer. 
 
 
 
 

N 8 9 10 11 12 14 16 18 20 25 30 35 40 45 50 75 

Mqe a 0.143 0.113 0.148 0.134 0.120 0.126 0.130 0.155 0.122 0.120 0.129 0.151 0.115 0.117 0.110 0.121 

N 8 9 10 11 12 14 16 18 20 25 30 35 40 45 50 75 

Mqe b 0.143 0.144 0.153 0.140 0.118 0.213 0.140 0.159 0.136 0.172 0.097 0.172 0.108 0.133 0.126 0.155 

N 8 9 10 11 12 14 16 18 20 25 30 35 40 45 50 75 

Mqe c 0.183 0.176 0.135 0.130 0.145 0.250 0.129 0.143 0.221 0.103 0.150 0.188 0.098 0.109 0.122 0.112 

 
 
6.2. Perceptron configuration with two hidden layers 
According to calculation methodology to select the best network with two hidden layers (Table 3), 
best configuration was found for N = 41.8 in the first hidden layer and N = 18.4 in the second hidden 

Figure 1. Configuration of the perceptron with one hidden layer of "S" neurones. 

Table 2.Mean quadratic error of perceptrons with one 
hidden layer, for the three data divisions considered
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layer, which corresponds to a perceptron with 42 neurones in the first hidden layer and 18 
neurones in the second hidden layer. 
 
 
 

N 45-30 46-29 47-28 48-27 49-26 50-25 51-24 52-23 53-22 54-21 55-20 

Mqe a 0.107 0.145 0.133 0.123 0.153 0.154 0.110 0.098 0.105 0.127 0.111 

N 25-20 26-19 27-18 28-17 29-16 30-15 31-14 32-13 33-12 34-11 35-10 

Mqe b 0.146 0.114 0.137 0.150 0.112 0.166 0.184 0.136 0.164 0.103 0.157 

N 35-25 36-24 37-23 38-22 39-21 40-20 41-19 42-18 43-17 44-16 45-15 

Mqe c 0.128 0.149 0.129 0.110 0.100 0.144 0.169 0.122 0.139 0.147 0.105 

 
6.3. Final configuration of the perceptron network 
From calculation of mqe of selected perceptrons with 1 and 2 hidden layers, trained with data division 
‘d’ it can be deduced that best configuration is perceptron network with one hidden layer of 40 
neurones. The reason for this is that for one hidden layer with N = 40, Mqe d is 0.163, which is 
smaller than Mqe d of 0.173 for two hidden layers with N= 42-18. 
 
7. CONCLUSIONS 
Although the honing process is not linear, it is enough to use a network with one hidden layer to model 
the process. Increasing complexity of the network by increasing number of hidden layer does not 
improve results. A future line of work is to compare the selected network with other statistical models 
that also model the interior honing process. 
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